Suplementasi Bacillus subtilis terhadap Produktivitas Ayam Petelur Skala Komersial

Supplementation of Bacillus subtilis to Productivity of Laying Hens on a Commercial Scale

  • A Y Widodo Faculty of Animal Science, IPB University
  • Sumiati
  • R Tarigan
Keywords: AGP, Bacillus subtilis, laying hen, probiotic, productivity


This study, the impact of Bacillus subtilis probiotics on the productivity and faecal microbial variable of commercial laying hens in Indonesia was investigated. A total of 100,296 laying hens aged 18 weeks in a close house system were randomly allocated into two treatments with four replications per treatments. The applied treatments were T0 (control) and T1 (feed with probiotics). The experiment involved feeding laying hens with/without Bacillus subtilis strains 747 and 1781 (bacterial load of 1.5x108 cfu/kg feed, strain ratio of 1:1), collecting data on egg production, egg weight, feed consumption, and depletion from 20 to 26 weeks. Those variable were also observed from 18 to 19 weeks as pre-treatment data. Faecal samples were collected at 26 weeks for analysis of Escherichia coli, Clostridium perfringens, and lactic acid bacteria levels. The results revealed that administering Bacillus subtilis strains 1781 and 747 significantly increased daily egg production by 7.9% and reduced daily depletion by 65% at the end of the treatment phase. However, probiotic supplementation did not affect daily feed intake, feed conversion ratio, egg weight, or the levels of E. coli, C. perfringens, and lactic acid bacteria in the hens' faeces. These findings demonstrate the potential and feasibility of Bacillus subtilis strains 1781 and 747 in improving the productivity and health of laying hens of commercial-scale production. This information is valuable for the poultry industry in optimizing production practices.

Key words:        AGP, Bacillus subtilis, laying hen, probiotic, productivity


Download data is not yet available.


Berthold-Pluta A, Pluta A & Garbowska M. 2015. The effect of selected factors on the survival of Bacillus cereus in the human gastrointestinal tract. Microbial Pathogenesis. 82:7–14. doi:10.1016/j.micpath.2015.03.015.

Cao C, Chowdhury VS, Cline MA & Gilbert ER. 2021. The microbiota-gut-brain axis during heat stress in chickens: a review. Frontier in Physiology. 12. doi:10.3389/fphys.2021.752265.

Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C & Panwar H. 2017. Bacillus as potential probiotics: status, concerns, and future perspectives. Frontier in Microbiology. 8 :1–15.doi:10.3389/ fmicb.2017.01490.

Gadde U, Oh ST, Lee YS, Davis E, Zimmerman N, Rehberger T & Lillehoj HS. 2017. The effects of direct-fed microbial supplementation, as an alternative to antibiotics, on growth performance, intestinal immune status, and epithelial barrier gene expression in broiler chickens. Probiotics and Antimicrobial. Proteins. 9(4):397–405.doi:10.1007/s12602-017-9275-9.

Hartono M & Kurtini T. 2015. Pengaruh pemberian probiotik terhadap performa ayam petelur (the effect of probiotic supplements on layer performance). Jurnal Penelitian Pertanian Terapan. 15(3):214–219.

Jha R, Das R, Oak S & Mishra P. 2020. Probiotics (direct‐fed microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: A systematic review. Animals. 10(10):1–19.doi:10.3390/ani10101863.

Jiang S, Hu JY & Cheng HW. 2022. The Impact of probiotic Bacillus subtilis on injurious behavior in laying hens. Animals. 12(7). doi:10.3390/ani12070870.

Kotsanas D, Carson JA, Awad MM, Lyras D, Rood JI, Jenkin GA, Stuart RL & Korman TM. 2010. Novel use of tryptose sulfite cycloserine egg yolk agar for isolation of Clostridium perfringens during an outbreak of necrotizing enterocolitis in a neonatal unit. Journal of Clinical Microbiology. 48(11):4263–4265.doi:10.1128/JCM.01724-10.

Lee ZZ, Abraham R, O’Dea M, Harb A, Hunt K, Lee T, Abraham S & Jordan D. 2021. Validation of selective agars for detection and quantification of Escherichia coli strains resistant to critically important antimicrobials. Microbiology. Spectrum 9(3):1–12.doi:10.1128/spectrum.00664-21.

Luo C, Liu X, Zhou X, Guo J, Truong J, Wang X, Zhou H, Li X & Chen Z. 2015. Unusual biosynthesis and structure of locillomycins from Bacillus subtilis 916. Applied. Environmental Microbiology. 81(19):6601–6609.doi:10.1128/AEM.01639-15.

Park I, Lee Y, Goo D, Zimmerman NP, Smith AH, Rehberger T & Lillehoj HS. 2020. The effects of dietary Bacillus subtilis supplementation, as an alternative to antibiotics, on growth performance, intestinal immunity, and epithelial barrier integrity in broiler chickens infected with Eimeria maxima. Poultry Science. 99(2):725–733.doi:10.1016/j.psj.2019.12.002.

Park I, Zimmerman NP, Smith AH, Rehberger TG, Lillehoj EP & Lillehoj HS. 2020. Dietary supplementation with Bacillus subtilis direct-fed microbials alters chicken intestinal metabolite levels. Frontiers in Veterinary Science. 7:1–9.doi:10.3389/fvets.2020.00123.

Pratama HS, Lokapirnasari WP, Soeharsono S, Al-Arif MA, Harijani N & Hidanah S. 2021. Effect of probiotics Bacillus subtilis on feed efficiency and egg mass of laying hens. Jurnal Medica Veterinaria. 4(1):37.doi:10.20473/jmv.vol4.iss1.2021.37-41.

La Ragione RM, Casula G, Cutting SM & Woodward MJ. 2001. Bacillus subtilis spores competitively exclude Escherichia coli O78:K80 in poultry. Veterinary Microbiology. 79 (2):133–142.doi:10.1016/ S0378-1135(00)00350-3.

Rehberger T, Hutchison E, Smith AG & Rehberger J. 2019. Methods of Microbial Treatment of Poultry. US Patent No: 10,201,574 B1.

Ribeiro V, Albino LFT, Rostagno HS, Barreto SLT, Hannas MI, Harrington D, de Araujo FA, Ferreira HC & Ferreira MA. 2014. Effects of the dietary supplementation of Bacillus subtilis levels on performance, egg quality and excreta moisture of layers. Animial Feed Science and Technology. 195: 142–146.doi:10.1016/j.anifeedsci.2014.06.001.

Sandvang D, Skjoet-Rasmussen L, Cantor MD, Mathis GF, Lumpkins BS & Blanch A. 2021. Effects of feed supplementation with 3 different probiotic Bacillus strains and their combination on the performance of broiler chickens challenged with Clostridium perfringens. Poultry Science. 100(4):100982. doi: 10.1016/j.psj.2021.01.005.

Sucipto A, Lisnanti EF & Rudiono D. 2020. Pengaruh pemberian Bacillus subtilis dan Saccharhomyces cerevisiae terhadap produksi ayam layer umur 36 minggu. Rekasatwa Jurnal Ilmu-ilmu Peternakan. 2(2):97–105.

Wang X, Farnell YZ, Peebles ED, Kiess AS, Wamsley KGS & Zhai W. 2016. Effects of prebiotics, probiotics, and their combination on growth performance, small intestine morphology, and resident Lactobacillus of male broilers. Poultry Science. 95(6):1332–1340.doi:10.3382/ps/pew030.

Wardiana NI, Lokapirnasari WP, Harijani N, Al-Arif MA & Ardianto A. 2021. Bacillus subtilis probiotics in chicken feed improve egg quality with differences in shelf life. Jurnal Medik Veteriner. 4(1):8. doi:10.20473/jmv.vol4.iss1.2021.8-13.

Wu L, Wu HJ, Qiao J, Gao X & Borriss R. 2015. Novel routes for improving biocontrol activity of Bacillus based bioinoculants. Frontiers Microbiology. 6:1–13.doi:10.3389/fmicb.2015.01395.

Yanti AH, Setyawati TR & Kurniatuhadi R. 2020. Isolation and characterization of lactic acid bacteria from fecal pellets, coelomic fluid, and gastrointestinal tract of nypa worm (Namalycastis rhodochorde) from West Kalimantan, Indonesia. Biodiversitas. 21(10):4726–4731.doi:10.13057/biodiv/d211036.

Zou X, Jiang S, Zhang M, Hu H, Wu X, Liu J, Jin M & Cheng H. 2021. Effects of Bacillus subtilis on production performance, bone physiological property and hematology indexes in laying hens. Animals. 11(7). doi:10.3390/ani11072041.

How to Cite
WidodoA. Y., Sumiati, & TariganR. (2023). Suplementasi Bacillus subtilis terhadap Produktivitas Ayam Petelur Skala Komersial: Supplementation of Bacillus subtilis to Productivity of Laying Hens on a Commercial Scale. Jurnal Ilmu Nutrisi Dan Teknologi Pakan, 21(3), 201-207.

Most read articles by the same author(s)

1 2 > >>