Egg Production, Egg Quality, and Fatty Acid Profile of Indonesian Local Ducks Fed with Turmeric, Curcuma, and Probiotic Supplementation

I. Ismoyowati, D. Indrasanti, A. Ratriyanto, Sumiati

Abstract

Indonesian local ducks are commonly raised for egg production purposes. However, the performances of these ducks are still variable and must be improved. This study investigated the effects of turmeric, curcuma, and probiotic supplementations on the egg production and quality of Indonesian local ducks, emphasizing the eggs’ fatty acid profile. Two hundred female local ducks aged 16 weeks were randomly allotted to four dietary treatments with five replicates of 10 birds. The ducks were fed a corn and rice bran-based diet containing different supplements, i.e., a diet without supplementation as the control diet, a diet supplemented with turmeric at the level of 4%, a diet supplemented with curcuma at the level of 4%, and a diet supplemented with starbio probiotics at the level of 2%. The measured data were analyzed using analysis of variance using the 13 Systat program and continued with Duncan’s Multiple Range Test. Turmeric supplementation increased egg production compared with the control, and the duck fed probiotics consumed more feed than the control. Curcuma supplementation generated the lowest feed consumption, egg production, and physical egg quality than the other treatments (p<0.05). The probiotics supplementation enhanced the blood high-density lipoprotein concentration (p<0.05). Turmeric, curcuma, and probiotics supplementations generate variable responses in egg production and egg quality, including the fatty acid profile in the eggs. Turmeric and probiotics supplementations positively impact egg production, egg quality, or unsaturated fatty acid profile in the egg. However, curcuma supplementation decreased egg production and egg quality of local ducks. Furthermore, the fatty acid profile was not influenced by these supplements. It is concluded that supplementation of turmeric at the level of 4% and probiotics at the level of 2% in the diet can increase egg production and egg quality of local duck.

References

Abdelqader, A., R. Irshaid, & A. R. Al-Fataftah. 2013. Effects of dietary probiotic inclusion on performance, eggshell quality, cecal microflora composition, and tibia traits of laying hens in the late phase of production. Trop. Anim. Health Prod. 45: 1017–1024. https://doi.org/10.1007/s11250-012-0326-7
AOAC. 2012a. Analysis of fatty acids. https://www.cfs.gov.hk/english/programme/programme_nifl/files/Analysis_of_Fatty_acids.pdf
AOAC. 2012b. Analysis of total fat. https://www.cfs.gov.hk/english/programme/programme_nifl/files/Analysis_of_Total_Fat.pdf
Atun, S., N. Aznam, R. Arianingrum, Senam, B. I. An Naila, A. Lestari1, N. A. Purnamaningsih. 2020. Characterization of curcuminoid from Curcuma xanthorrhizaand its activity test as antioxidant and antibacterial. Molekul 15:79–87. https://doi.org/10.20884/1.jm.2020.15.2.540
Basavaraj, M., V. Nagabhushana, N. Prakash, M. M. Appannavar, P. Wagmare, & S. Mallikarjunappa. 2011. Effect of dietary supplementation of Curcuma longa on the biochemical profile and meat characteristics of broiler rabbits under summer stress. Vet. World. 4:15–18. https://doi.org/10.5455/vetworld.2011.15-18
Dei Cas, M. & R. Ghidoni. 2019. Dietary curcumin: Correlation between bioavailability and health potential. Nutrients 11:2147. https://doi.org/10.3390/nu11092147
Directorate General of Animal Husbandry and Health. 2021. Livestock and Animal Health Statistics. Ministry of Agriculture, Jakarta.
Etches, R. J. 1996. Reproduction in Poultry. CAB International, Wallingford, UK.
Ezzat, W. & M. S. Shoeib. 2011. Impact of betaine, vitamin C and folic acid supplementations to the diet on productive and reproductive performance of matrouh poultry strain under Egyptian summer condition. Egyptian Poultry Science Journal 31:521–337.
Feng, D., L. Ohlsson, & R. D. Duan. 2010. Curcumin inhibits cholesterol uptake in Caco-2 cells by down-regulation of NPC1L1 expression. Lipids Health Dis. 9: 40. https://doi.org/10.1186/1476-511X-9-40
Friedewald, W. T., R. I. Levy, & D. S. Fredrickson. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry 18:499-502. https://doi.org/10.1093/clinchem/18.6.499
Frita, Y., H. L. Chang, M. J. Lin, & E. Widodo. 2017. Effect of curcuma domestica stock solution on layer performance, egg quality, and antioxidant activity. International Seminar on Tropical Animal Production 2017:309–312.
Gunadi, D., Rukmiasih, & W. Manalu. 2021. Potential Uses of Curcumin and PMSG Hormones to increase egg production of muscovy ducks through increasing estradiol concentrations and shortening laying rest period. Anim. Prod. 23:84-94. https://doi.org/10.20884/1.jap.2021.23.2.98
Hafeez, A., A. Mader, I. Ruhnke, K. Männer, & J. Zentek. 2016. Effect of feed grinding methods with and without expansion on prececal and total tract mineral digestibility as well as on interior and exterior egg quality in laying hens. Poult. Sci. 95:62–69. https://doi.org/10.3382/ps/pev316
Hayakawa, H., Y. Minaniya, K. Ito, Y. Yamamoto, & T. Fukuda. 2011. Difference of curcumin content in Curcuma longa L. (Zingiberaceae) caused by hybridization with other curcuma species. Am. J. Plant Sci. 2:111–119. https://doi.org/10.4236/ajps.2011.22013
He, J., H. Zheng, D. Pan, T. Liu, Y. Sun, J. Cao, Z. Wu, & X. Zeng. 2018. Effects of aging on fat deposition and meat quality in Sheldrake duck. Poult. Sci. 97:2005–2010. https://doi.org/10.3382/ps/pey077
Huang, Y., X. Wang, J. Wang, F. Wu, Y. Sui, L. Yang, & Z. Wang. 2013. Lactobacillus plantarum strains as potential probiotic cultures with cholesterol-lowering activity. J. Dairy Sci. 96:2746–2753. https://doi.org/10.3168/jds.2012-6123
Ismoyowati, I. & J. Sumarmono. 2019. Duck production for food security. IOP Conf. Ser. Earth Environ. Sci. 372:012070. https://doi.org/10.1088/1755-1315/372/1/012070
Ismoyowati, I., D. Indrasanti, M. Mufti, & A. S. Farjam. 2015. Phytobiotic properties of garlic, red ginger, turmeric and kencur in growing ducks. Anim. Prod. 17:49-55. https://doi.org/10.20884/1.anprod.2015.17.1.484
Ismoyowati, I., D. Indrasanti, S. Mugiyono, & M. Pangestu. 2019. Phytogenic compounds do not interfere physiological parameters and growth performances on two Indonesian local breeds of ducks. Vet. World. 12:1689–1697. https://doi.org/10.14202/vetworld.2019.1689-1697
Jacob, J. & R. Miles. 2011. Designer and specialty eggs. The Institute of Food and Agricultural Sciences PS51:1–4.
Khalaji, S., M. Zaghari, K. H. Hatami, S. Hedari-Dastjerdi, L. Lotfi, & H. Nazarian. 2011. Black cumin seeds, artemisia leaves (Artemisia sieberi), and Camellia L. plant extract as phytogenic products in broiler diets and their effects on performance, blood constituents, immunity, and cecal microbial population. Poult. Sci. 90:2500–2510. https://doi.org/10.3382/ps.2011-01393
Lee, Y, L., J. S. Shim, Y. Rukayadi, & J. K. Hwang. 2008. Antibacterial activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. against foodborne pathogens. J. Food Prot. 71:1926–1930. https://doi.org/10.4315/0362-028X-71.9.1926
Levy, A. W., J. W. Kessler, L. Fuller, S. Williams, G. F. Mathis, B. Lumpkins, & F. Valdez. 2015. Effect of feeding an encapsulated source of butyric acid (ButiPEARL) on the performance of male cobb broilers reared to 42 d of age. Poult. Sci. 94:1864–1870. https://doi.org/10.3382/ps/pev130
Liu, M., Y. Lu, P. Gao, X. Xie, D. Li, D. Yu, & M. Yu. 2020. Effect of curcumin on laying performance, egg quality, endocrine hormones, and immune activity in heat-stressed hens. Poult. Sci. 99:2196–2202. https://doi.org/10.1016/j.psj.2019.12.001
Lu, J. & X. Zou. 2006. Effects of adding betaine on laying performance and contents of serum yolk precursors VLDL and VTG in laying hen. J. Zhejiang Univ. 32:287–291.
Malekizadeh, M., M. M. Moeini, & S. Ghazi, S. 2012. The effects of different levels of ginger (Zingiber officinale Rosc) and turmeric (Curcuma longa Linn) rhizomes powder on some blood metabolites and production performance characteristics of laying hens. J. Agric. Sci. Technol. 14:127–134.
Masoud-Moghaddama, S., J. Mehrzada, A. H. Alizadeh-Ghamsarib, R. Bahari Kashanic, & J. Saeidi. 2021. Comparison of different herbal additives on immune response and growth performance of broiler chickens. Trop. Anim. Sci. J. 44:327-335. https://doi.org/10.5398/tasj.2021.44.3.327
Masubuchi, Y. & T. Horie. 2007. Toxicological significance of mechanism-based inactivation of cytochrome P450 enzymes by drugs. Crit. Rev. Toxicol. 37: 389–412. https://doi.org/10.1080/10408440701215233
Mikulski, D., J. Jankowski., J. Naczmanski, M. Mikulska, & V. Demey. 2012. Effects of dietary probiotic (Pediococcus acidilactici) supplementation on performance, nutrient digestibility, egg traits, egg yolk cholesterol, and fatty acid profile in laying hens. Poult. Sci. 91:2691–2700. https://doi.org/10.3382/ps.2012-02370
Mori, H., M. Takaya, K. Nishimura, & T. Goto. 2020. Breed and feed affect amino acid contents of egg yolk and eggshell color in chickens. Poult. Sci. 99:172–178. https://doi.org/10.3382/ps/pez557
Mousavi, S. N., E. Fahimi, & R. Taherkhani. 2016. Effects of different feed forms and cage densities on laying hen performance and stress status. Eur. Poult. Sci. 80:1–9.
Peralta-Sánchez, J. M., A. M. Martín-Platero, J. J. Ariza-Romero, M. Rabelo-Ruiz., M. J. Zurita-González, A. Baños, S. M. Rodríguez-Ruano, M. Maqueda, E. Valdivia, & M. Martínez-Bueno. 2019. Egg production in poultry farming is improved by probiotic bacteria. Front. Microbiol. 10:1–13. https://doi.org/10.3389/fmicb.2019.01042
Prakasita, V. C., W. Asmara, S. Widyarini, & A. E. T. H. Wahyuni. 2019. Combinations of herbs and probiotics as an alternative growth promoter: An in vitro study. Vet. World. 12:614–620. https://doi.org/10.14202/vetworld.2019.614-620
Putri, A. A. A., A. Widodo, R. Damayanti, & T. W. Suprayogi. 2020. The potency of giving turmeric (Curcuma domestica Val.) flour to the quality of quail (Coturnix coturnix japonica) eggs. Journal of Applied Veterinary Science and Technology 1:1-5. https://doi.org/10.20473/javest.V1.I1.2020.1-5
Ratriyanto, A., R. Indreswari, R. Dewanti, & S. Wahyuningsih. 2018. Egg quality of quails fed low methionine diet supplemented with betaine. IOP Conf. Ser. Earth Environ. Sci. 142:012002. https://doi.org/10.1088/1755-1315/142/1/012002
Rodriguez-Sanchez, R., A. Tres, R. Sala, C. Garcés-Narro, F. Guardiola, J. Gasa, & A. C. Barroeta. 2019. Effects of dietary free fatty-acid content and saturation degree on lipid-class composition and fatty-acid digestibility along the gastrointestinal tract in broiler starter chickens. Poult. Sci. 98:4929–4941. https://doi.org/10.3382/ps/pez253
Rukayadi, Y. & J. K. Hwang. 2013. In vitro activity of xanthorrhizol isolated from the rhizome of javanese turmeric (Curcuma xanthorrhiza Roxb.) against Candida albicans Biofilms. Phytotherapy Research 27:1061–1066. https://doi.org/10.1002/ptr.4834
Saraswati, T. R., W. Manalu, D. R. Ekastuti, & N. Kusumorini. 2013. Increased egg production of Japanese quail (Coturnix japonica) by improving liver function through turmeric powder supplementation. Int. J. Poult. Sci. 12:601–614. https://doi.org/10.3923/ijps.2013.601.614
Siahaan, N. B., E. Suprijatna, & L. D. Mahfudz. 2013. Effect of red ginger meal (Zingiber officinale var. Rubrum) in Kampung Chicken’s diet on body weight rate and egg production. Animal Agriculture Journal 2:478–488.
Simanjuntak, R., U. Santoso, & T. Akbarillah. 2013. Pengaruh pemberian tepung daun katuk (Sauropus androgynus) dalam ransum terhadap kualitas telur Itik Mojosari (Anas javanica). Jurnal Sain Peternakan Indonesia. 8:65–76. https://doi.org/10.31186/jspi.id.8.1.65-76
Sinanoglou, V. J., L. F. Strati, & S. Miniadis-Meimaroglou. 2011. Lipid, fatty acid and carotenoid content of edible egg yolks from avian species: A comparative study. Food Chem. 124:971–977. https://doi.org/10.1016/j.foodchem.2010.07.037
Sirotkin, A.V., A. Kadasi, A. Stochmalova, A. Balazi, M. Földesiová, P. Makovicky, P. Chrenek, & A. H. Harrath. 2018. Effect of turmeric on the viability, ovarian folliculogenesis,fecundity, ovarian hormones and response to luteinizing hormoneof rabbits. Animal 12:242–1249. https://doi.org/10.1017/S175173111700235X
Stadelman, W. J. & O. J. Cotteril. 1995. Egg Science and Technology. The Haworth Press, Oxon.
Steel, R. G. D., J. H. Torrie, & D. A. Dickey. 1996. Principles and Procedures of Statistics: A Biometrical Approach. McGraw-Hill, New York.
Van den Berge, V., E. Delezie, P. Delahaut, G. Pierret, P. de Backer, E. Daeseleire, & S. Croubels. 2012. Transfer of flubendazole and tylosin at cross contamination levels in the feed to egg matrices and distribution between egg yolk and egg white. Poult. Sci. 91:1248–1255. https://doi.org/10.3382/ps.2011-02071
Xie, Z., G. Shen, Y. Wang, & C. Wu. 2019. Curcumin supplementation regulates lipid metabolism in broiler chickens. Poult. Sci. 98:422–429. https://doi.org/10.3382/ps/pey315
Zhang, P., T. Yan, X. Wang, S. Kuang, Y. Xiao, W. Lu, & D. Bi. 2017. Probiotic mixture ameliorates heat stress of laying hens by enhancing intestinal barrier function and improving gut microbiota. Ital. J. Anim. Sci. 16:292–300. https://doi.org/10.1080/1828051X.2016.1264261
Zhang, J, Z. Sun, S. Jiang, X. Bai, C. Ma, Q. Peng, K. Chen, H. Chang, T. Fang, & H. Zhang. 2019. Probiotic Bifidobacterium lactis V9 regulates the secretion of sex hormones in polycystic ovary syndrome patients through the gut-brain axis. mSystems. 4:e00017-e00019. https://doi.org/10.1128/mSystems.00017-19
Zhu, Y. Z., J. L. Cheng, M. Ren, L. Yin, & X. S. Piao. 2015. Effect of γ-aminobutyric acid-producing Lactobacillus strain on laying performance, egg quality and serum enzyme activity in Hy-line brown hens under heat stress. Asian-Australas. J. Anim. Sci. 28:1006–1013. https://doi.org/10.5713/ajas.15.0119

Authors

I. Ismoyowati
ismoyowati@unsoed.ac.id (Primary Contact)
D. Indrasanti
A. Ratriyanto
Sumiati
IsmoyowatiI., IndrasantiD., RatriyantoA., & Sumiati. (2022). Egg Production, Egg Quality, and Fatty Acid Profile of Indonesian Local Ducks Fed with Turmeric, Curcuma, and Probiotic Supplementation. Tropical Animal Science Journal, 45(3), 319-326. https://doi.org/10.5398/tasj.2022.45.3.319

Article Details

List of Cited By :

Crossref logo