Effect of pulsed electric field on the number and cell membrane of Vibrio parahaemolyticus in salted squid

Pengaruh medan listrik berdenyut terhadap jumlah total dan membran sel Vibrio parahaemolyticus pada cumi asin

Authors

DOI:

https://doi.org/10.17844/jphpi.v28i6.63292

Keywords:

bacterial reduction, cell damage, contamination, flow cytometer, SEM

Abstract

Squid are susceptible to bacterial contamination by Vibrio parahaemolyticus, with a prevalence of 80%. Squid preservation is generally achieved by drying after brine salting, which does not always completely stop the growth of V. parahaemolyticus. To reduce bacterial numbers, a boiling process is usually conducted before drying. This study aimed to determine the optimal electric field and duration for inactivating V. parahaemolyticus and evaluating the effectiveness of pulsed electric fields (PEF) technology on salted squid. PEF technology specifications with a current strength of 2 amperes using electric fields (3.5, 7, and 10.5 kV/cm) and time durations (10, 20, and 30 s). Bacterial reduction by electric fields was observed using colony counts, followed by counting of dead cells using a flow cytometer. Bacterial damage was observed using a scanning electron microscope. The results showed that PEF with the highest intensity (10.5 kV/cm for 30 s) reduced V. parahaemolyticus by 66.12% at high contamination levels (approximately 106 CFU/g) and 97.63% at low contamination levels (approximately 102 CFU/g) in salted squid. These results were comparable to those obtained after boiling treatment (2 min, 85°C). Damage to the bacterial cell membrane increased due to the increasing electric field, as observed by increasing in red fluorescing cells by flow cytometry and cell damage by SEM. PEF is a promising alternative technology for producing salted squid.

References

Alvianti, R. S., Hasan, B., & Iriani, D. (2023). Microbiological quality status of dried squid (Loligo sp.) marketed in Pasar Pagi Arengka Market of Pekanbaru. Berkala Perikanan Terubuk, 51(1), 1792-1801. https://doi.org/10.31258/terubuk.51.1.1792-1801

Alkanan, Z. T., Altemimi, A. B., Younis, M. I., Ali, M. R., Cacciola, F., & Abedelmaksoud, T. G. (2024). Trends, recent advances, and application of pulsed electric field in food pro-cessing: A review. CBEN, 11(0), 19. https://doi.org/10.1002/cben.202300078

Austin, B. (2010). Vibrios as causal agents of zoonoses. Veterinary Microbiology, 140(3–4), 310–317. https://doi.org/10.1016/j.vetmic.2009.03.015

AOAC International. (2019). Official methods of analysis of AOAC International (21st ed., G. W. Latimer Jr., Ed.). AOAC International.

Badan Pengawas Obat dan Makanan [BPOM]. (2019). Pedoman penerapan peraturan Badan POM tentang cemaran mikroba dalam pangan olahan. https://standarpangan.pom.go.id/dokumen/pedoman/Pedoman-Penerapan-Peraturan-Badan-POM-Tentang-Cemaran-Mikroba-dalam-Pangan-Olahan.pdf.

Barba, F. J., Parniakov, O., Pereira, S. A., Wiktor, A., Grimi, N., Boussetta, N., ... & Voro-biev, E. (2015). Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Research International, 77, 773–798. http://dx.doi.org/10.1016/j.foodres.2015.09.015

Bekhit, A. E.-D. A., van de Ven, R., Suwandy, V., Fahri, F., & Hopkins, D. L. (2014). Effect of pulsed electric field treatment on cold-boned muscles of different potential tenderness. Food and Bioprocess Technology, 7(11), 3136–3146. https://doi.org/10.1007/s11947-014-1324-8

Bhat, Z. F., Morton, J. D., Bekhit, A. E.-D. A., Kumar, S., & Bhat, H. F. (2021). Thermal pro-cessing implications on the digestibility of meat, fish and seafood proteins. Comprehen-sive Reviews in Food Science and Food Safety, 20(5), 4511–4548. https://doi.org/10.1111/1541-4337.12802

Bhat, Z. F., Morton, J. D., Mason, S. L., & Bekhit, A. E.D. A. (2019). Pulsed electric field operates enzymatically by causing early activation of calpains in beef during ageing. Meat Science, 153, 144–151. https://doi.org/10.1016/j.meatsci.2019.03.018

Brumfield, K. D., Chen, A. J., Gangwar, M., Usmani, M., Hasan, N. A., Jutla, A. S., Huq, A., & Colwell, R. R. (2023). Environmental factors influencing occurrence of Vibrio para-haemolyticus and Vibrio vulnificus. Applied and Environmental Microbiology, 89(6), 119. https://doi.org/10.1128/aem.00307-23

Chen, S. Y., Jane, W. N., Chen, Y. S., & Wong, H. C. (2009). Morphological changes of Vib-rio parahaemolyticus under cold and starvation stresses. International Journal of Food Microbiology, 129(2), 157–165. https://doi.org/10.1016/j.ijfoodmicro.2008.11.009

Chen, Z. L., Li, Y., Wang, J. H., Wang, R., Teng, Y. X., Lin, J. W., Zeng, X. A., Woo, M. W., Wang, L., & Han, Z. (2023). Pulsed electric field improves the EGCG binding ability of pea protein isolate unraveled by multi-spectroscopy and computer simulation. Interna-tional Journal of Biological Macromolecules, 244, 113. https://doi.org/10.1016/j.ijbiomac.2023.125082

Chen, Y., Wang, T., Zhang, Y., Yang, X., Du, J., Yu, D., & Xie, F. (2022). Effect of moder-ate electric fields on the structural and gelation properties of pea protein isolate. Innova-tive Food Science and Emerging Technologies, 77(1), 112. https://doi.org/10.1016/j.ifset.2022.102959

Cropotova, J., Tappi, S., Genovese, J., Rocculi, P., Dalla Rosa, M., & Rustad, T. (2021). The combined effect of pulsed electric field treatment and brine salting on changes in the ox-idative stability of lipids and proteins and color characteristics of sea bass (Dicentrarchus labrax). Heliyon, 7(1), 18. https://doi.org/10.1016/j.heliyon.2021.e05947

Chimalapati, S., Lafrance, A. E., Chen, L., & Orth, K. (2020). Vibrio parahaemolyticus: Basic techniques for growth, genetic manipulation, and analysis of virulence factors. Current Protocols in Microbiology, 59(1), 126. https://doi.org/10.1002/cpmc.131

Darmawan, A., Wulandari, N., Nurjanah, S., Sugiarto, A. T., & Kusumaningrum, H. D. (2024). Optimization of pulsed electric field design for seafood products with salting process [Conference session]. Frontier in Sustainable Agromaritime and Environmental Development Conference, Bogor, Indonesia. IOP Conference Series: Earth and Envi-ronmental Science. https://doi.org/10.1088/1755-1315/1359/1/012020.

Demir, E., Tappi, S., Dymek, K., Rocculi, P., & Gómez Galindo, F. (2023). Reversible elec-troporation caused by pulsed electric field: Opportunities and challenges for the food sec-tor. Trends in Food Science & Technology, 139, 117. https://doi.org/10.1016/j.tifs.2023.104120

DePaola, A., Ulaszek, J., Kaysner, C. A., Tenge, B. J., Nordstrom, J. L., Wells, J., Puhr, N., & Gendel, S. M. (2003). Molecular, serological, and virulence characteristics of Vibrio parahaemolyticus isolated from environmental, food, and clinical sources in North Amer-ica and Asia. Applied and Environmental Microbiology, 69(7), 39994005. https://doi.org/10.1128/AEM.69.7.3999-4005.2003

Food and Agriculture Organization [FAO]. (2011). Risk assessment of Vibrio parahaemolyti-cus in seafood (Microbiological Risk Assessment Series No. 16). FAO.

Falcioni, T., Papa, S., Campana, R., Manti, A., Battistelli, M., & Baffone, W. (2008). State transitions of Vibrio parahaemolyticus VBNC cells evaluated by flow cytometry. Cytom-etry Part B: Clinical Cytometry, 74(5), 272–281. https://doi.org/10.1002/cyto.b.20427

Gómez, B., Munekata, P. E. S., Gavahian, M., Barba, F. J., Martí-Quijal, F. J., Bolumar, T., Campagnol, P. C. B., Tomasevic, I., & Lorenzo, J. M. (2019). Application of pulsed elec-tric fields in meat and fish processing industries: An overview. Food Research Interna-tional, 123, 95–105. https://doi.org/10.1016/j.foodres.2019.04.047

Hackbusch, S., Wichels, A., Gimenez, L., Döpke, H., & Gerdts, G. (2020). Potentially human pathogenic Vibrio spp. in a coastal transect: Occurrence and multiple virulence factors. The Science of the Total Environment, 707, 114. https://doi.org/10.1016/j.scitotenv.2019.136113

Han, N., Mizan, M. F. R., Jahid, I. K., & Ha, S. D. (2016). Biofilm formation by Vibrio para-haemolyticus on food and food contact surfaces increases with rise in temperature. Food Control, 70, 161–166. https://doi.org/10.1016/j.foodcont.2016.05.054

Harrison, J., Nelson, K., Morcrette, H., Morcrette, C., Preston, J., Helmer, L., Titball, R. W., Butler, C. S., & Wagley, S. (2022). The increased prevalence of Vibrio species and the first reporting of Vibrio jasicida and Vibrio rotiferianus at UK shellfish sites. Water Re-search, 211, 112. https://doi.org/10.1016/j.watres.2021.117942

He, Y., Ao, D.-H., Li, X.-Q., Zhong, S.-S., Rong, A., Wang, Y.-Y., Xiang, Y.-J., Xu, B.-L., Yang, T.-T., Gao, X.-G., & Liu, G.-Z. (2018). Increased soluble CD137 levels and CD4 T-cell-associated expression of CD137 in acute atherothrombotic stroke. Clinical and Translational Science, 11(6), 1–7. https://doi.org/10.1111/cts.12553

Heinz, V., Toepfl, S., & Knorr, D. (2014). Overview of pulsed electric fields processing for food. In H. Q. Zhang, G. V. Barbosa-Cánovas, V. M. Balasubramaniam, C. P. Dunne, D. F. Farkas, & J. T. C. Yuan (Eds.), Nonthermal processing technologies for food (pp. 93–114). Academic Press. https://doi.org/10.1016/B978-0-12-411479-1.00006-1

Holguin, J. P., Rodriguez, D. C., & Ramos, G. (2020). Reverse power flow (RPF) detection and impact on protection coordination of distribution systems. IEEE Transactions on In-dustry Applications, 56(3), 2393–2401. https://doi.org/10.1109/TIA.2020.2974536

Huang, Q., Zhang, Y., Zhang, M., Li, X., Wang, Q., Ji, X., Chen, R., Luo, X., Ji, S., & Lu, R. (2024). Assessment of Vibrionaceae prevalence in seafood from Qidong market and analysis of Vibrio parahaemolyticus strains. PLOS ONE, 19(8), 1-16. https://doi.org/10.1371/journal.pone.0309304

Jinadasa, B. K. K. K., Elliott, C., & Jayasinghe, G. D. T. M. (2022). A review of the presence of formaldehyde in fish and seafood. Food Control, 136, 18. https://doi.org/10.1016/j.foodcont.2022.108882

Kalburge, S. S., Whitaker, W. B., & Boyd, E. F. (2014). High-salt preadaptation of Vibrio parahaemolyticus enhances survival in response to lethal environmental stresses. Journal of Food Protection, 77(2), 246–253. https://doi.org/10.4315/0362-028X.JFP-13-241

Kotnik, T., Rems, L., Tarek, M., & Miklavčič, D. (2019). Membrane electroporation and elec-tropermeabilization: Mechanisms and models. Annual Review of Biophysics, 48, 63–91. https://doi.org/10.1146/annurev-biophys-052118-115451

Leisner, J. J., & Gram, L. (2014). FISH | Spoilage of fish. In C. Batt & M. L. Tortorello (Eds.), Encyclopedia of Food Microbiology (2nd ed., pp. 932–937). Elsevier. https://doi.org/10.1016/B978-0-12-384730-0.00048-1

Lee, G. J., Kim, Y. H., Jung, H. S., Kang, J. H., Kwon, J. H., & Jo, C. (2015). Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in low-fat milk by pulsed electric field treatment: A pilot-scale study. Korean Journal for Food Science of Animal Resources, 35(6), 800–806. https://doi.org/10.5851/kosfa.2015.35.6.800

Li, L., Yang, R., & Zhao, W. (2021). The effect of pulsed electric fields (PEF) combined with temperature and natural preservatives on the quality and microbiological shelf-life of can-taloupe juice. Foods, 10(11), 1-12. https://doi.org/10.3390/foods10112606

Liu, Y. F., Oey, I., Bremer, P., Silcock, P., Carne, A., & McConnell, M. (2019). Pulsed elec-tric fields treatment at different pH enhances the antioxidant and anti-inflammatory ac-tivity of ovomucin-depleted egg white. Food Chemistry, 276, 164–173. https://doi.org/10.1016/j.foodchem.2018.10.009

Liu, D., Pang, W., Ding, L., & Sun, J. (2016). An insight into the inhibitory activity of dihy-dromyricetin against Vibrio parahaemolyticus. Food Control, 67, 25–30. https://doi.org/10.1016/j.foodcont.2016.02.030

Lytras, F., Psakis, G., Gatt, R., Cebrián, G., Raso, J., & Valdramidis, V. (2024). Exploring the efficacy of pulsed electric fields (PEF) in microbial inactivation during food processing: A deep dive into the microbial cellular and molecular mechanisms. Innovative Food Sci-ence & Emerging Technologies, 95, 114. https://doi.org/10.1016/j.ifset.2024.103732

Machado, L. F., Pereira, R. N., Martins, R. C., Teixeira, J. A., & Vicente, A. A. (2010). Mod-erate electric fields can inactivate Escherichia coli at room temperature. Journal of Food Engineering, 96(4), 520–527. https://doi.org/10.1016/j.jfoodeng.2009.09.024

Malcolm, T. T. H., Chang, W. S., Loo, Y. Y., Cheah, Y. K., Radzi, C. W. J. W. M., Kantilal, H. K., Nishibuchi, M., & Son, R. (2018). Simulation of improper food hygiene practices: A quantitative assessment of Vibrio parahaemolyticus distribution. International Journal of Food Microbiology, 284, 112–119. https://doi.org/10.1016/j.ijfoodmicro.2018.08.012

Mahnič-Kalamiza, S., & Miklavčič, D. (2022). The phenomenon of electroporation. In D. Mi-klavčič (Ed.), Pulsed electric fields technology for the food industry (pp. 107–141). Springer International Publishing. https://doi.org/10.1007/978-3-030-80134-8_5

Ndraha, N., & Hsiao, H.-I. (2022). A climate-driven model for predicting the level of Vibrio parahaemolyticus in oysters harvested from Taiwanese farms using elastic net regularized regression. Microbial Risk Analysis, 21, 112. https://doi.org/10.1016/j.mran.2022.100201

Noda, T., Takahashi, A., Kondo, N., Mori, E., Okamoto, N., Nakagawa, Y., Ohnishi, K., Zdzienicka, M. Z., Thompson, L. H., Helleday, T., ... & Takeda, S. (2011). Repair path-ways independent of the Fanconi anemia nuclear core complex play a predominant role in mitigating formaldehyde-induced DNA damage. Biochemical and Biophysical Research Communications, 404(1), 206–210. https://doi.org/10.1016/j.bbrc.2010.11.094

Niu, D., Zeng, X.-A., Ren, E.-F., Xu, F.-Y., Li, J., Wang, M.-S., & Wang, R. (2020). Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Research International, 137, 113. https://doi.org/10.1016/j.foodres.2020.109715

Pazhani, G. P., Chowdhury, G., & Ramamurthy, T. (2021). Adaptations of Vibrio parahaemo-lyticus to stress during environmental survival, host colonization, and infection. Frontiers in Microbiology, 12, 113. https://doi.org/10.3389/fmicb.2021.737299

Phuvasate, S., & Su, Y. C. (2015). Efficacy of low-temperature high hydrostatic pressure pro-cessing in inactivating Vibrio parahaemolyticus in culture suspension and oyster homoge-nate. International Journal of Food Microbiology, 192, 15–20. https://doi.org/10.1016/j.ijfoodmicro.2014.11.018

Pillet, F., Formosa-Dague, C., Baaziz, H., Dague, E., & Rols, M.-P. (2016). Cell wall as a tar-get for bacteria inactivation by pulsed electric fields. Scientific Reports, 6, 18. https://doi.org/10.1038/srep19778

Power, A. K., & Spidlen, J. (2021). Flow cytometry analysis in bacterial viability assessment. Cytometry Part A, 99(3), 237–245. https://doi.org/10.1002/cyto.a.24372

Raso, J., Heinz, V., Alvarez, I., & Toepfl, S. (Eds.). (2022). Pulsed electric fields technology for the food industry: Fundamentals and applications (2nd ed.). Springer International Publishing. https://doi.org/10.1007/978-3-030-80134-8

Roy, P. K., Nahar, S., Mizan, M. F. R., Ashrafudoulla, M., Hossain, M. I., Toushik, S. H., Han, N., Shim, W.-B., Kim, Y.-M., & Ha, S.-D. (2021). Elimination of Vibrio parahae-molyticus biofilms on crab and shrimp surfaces using ultraviolet C irradiation coupled with sodium hypochlorite and slightly acidic electrolyzed water. Food Control, 128, 17. https://doi.org/10.1016/j.foodcont.2021.108179

Secci, G., & Parisi, G. (2016). From farm to fork: Lipid oxidation in fish products: A review. Italian Journal of Animal Science, 15(1), 124–136. https://doi.org/10.1080/1828051x.2015.1128687

Spurr, A. R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research, 26, 31–43. https://doi.org/10.1016/s0022-5320(69)90033-1

Su, Y.-C., & Liu, C. (2007). Vibrio parahaemolyticus: A concern of seafood safety. Food Mi-crobiology, 24(6), 549–558. https://doi.org/10.1016/j.fm.2007.01.005

Sungsri-in, R., Benjakul, S., & Kijroongrojana, K. (2011). Pink discoloration and quality changes of squid (Loligo formosana) during iced storage. LWT - Food Science and Tech-nology, 44(1), 206–213. https://doi.org/10.1016/j.lwt.2010.06.022

Shapiro, H. M. (2008). Flow cytometry of bacterial membrane potential and permeability. In Methods in Molecular Medicine (pp. 175–186). Humana Press. https://doi.org/10.1007/978-1-59745-321-9_13

Spidlen, J., Moore, W., Parks, D., Goldberg, M., Blenman, K., Cavenaugh, J. S., ISAC Data Standards Task Force, & Brinkman, R. (2021). Data file standard for flow cytometry, version FCS 3.2. Cytometry Part A: The Journal of the International Society for Analytical Cytology, 99(1), 100–102. https://doi.org/10.1002/cyto.a.24225

Suwandy, V., Carne, A., van de Ven, R., Bekhit, A. E. D. A., & Hopkins, D. L. (2015). Ef-fect of pulsed electric field on the proteolysis of cold boned beef M. longissimus lumbo-rum and M. semimembranosus. Meat Science, 100, 222–226. https://doi.org/10.1016/j.meatsci.2014.10.011

Tan, C. W., Rukayadi, Y., Hasan, H., Thung, T. Y., Lee, E., Rollon, W. D., Hara, H., Kayali, A. Y., Nishibuchi, M., & Radu, S. (2020). Prevalence and antibiotic resistance patterns of Vibrio parahaemolyticus isolated from different types of seafood in Selangor, Malaysia. Saudi Journal of Biological Sciences, 27(6), 1602–1608. https://doi.org/10.1016/j.sjbs.2020.01.002

Thongjun, J., Mittraparp-arthorn, P., Yingkajorn, M., Kongreung, J., Nishibuchi, M., & Vuddhakul, V. (2013). The trend of Vibrio parahaemolyticus infections in Southern Thai-land from 2006 to 2010. Tropical Medicine and Health, 41(4), 151–156. https://doi.org/10.2149/tmh.2013-06

Tomasevic, I., Heinz, V., Djekic, I., & Terjung, N. (2023). Pulsed electric fields and meat pro-cessing: Latest updates. Italian Journal of Animal Science, 22(1), 857–866. https://doi.org/10.1080/1828051x.2023.2206834

Toepfl, S. (2006). Pulsed electric fields (PEF) for permeabilization of cell membranes in food- and bioprocessing: Applications, process and equipment design, and cost analysis. Trends in Food Science & Technology, 17(9), 381–390. https://doi.org/10.1016/j.tifs.2006.01.006

Torres-Arreola, W., Ocaño-Higuera, V. M., Ezquerra-Brauer, J. M., López-Corona, B. E., Rodríguez-Félix, F., Castro-Longoria, R., & He, R.-G. (2018). Effect of cooking on phys-icochemical and structural properties of jumbo squid (Dosidicus gigas) muscle. Journal of Food Processing and Preservation, 42(2), 18. https://doi.org/10.1111/jfpp.13528

Tsai, W.-C., Chiu, Y.-L., Wu, H.-Y., Sun, W.-H., Tai, S.-J., Luan, C.-C., Peng, Y.-S., & Hsu, S.-P. (2021). Boiling for 15 minutes improves nutrient profiles in fishes included in the diets of dialysis patients. Hemodialysis International, 25(4), 541–547. https://doi.org/10.1111/hdi.12947

Vu, T. T. T., Hoang, T. T. H., Fleischmann, S., Pham, H. N., Lai, T. L. H., Cam, T. T. H., Tru-ong, L. O., Le, V. A. N. P., & Alter, T. (2022). Quantification and antimicrobial re-sistance of Vibrio parahaemolyticus in retail seafood in Hanoi, Vietnam. Journal of Food Protection, 85(5), 786–791. https://doi.org/10.4315/JFP-21-444

Wang, M., Bai, Z., Liu, S., Liu, Y., Wang, Z., Zhou, G., Gong, X., Jiang, Y., & Sui, Z. (2023). Accurate quantification of total bacteria in raw milk by flow cytometry using membrane potential as a key viability parameter. LWT, 173, 1-8. https://doi.org/10.1016/j.lwt.2022.114315

Wang, M. S., Wang, L. H., Bekhit, A. E.-D. A., Yang, J., Hou, Z. P., Wang, Y. Z., Dai, Q. Z., & Zeng, X. A. (2018). A review of sublethal effects of pulsed electric field on cells in food processing. Journal of Food Engineering, 223, 32–41. https://doi.org/10.1016/j.jfoodeng.2017.11.035

Wang, W., Li, M., & Li, Y. (2015). Intervention strategies for reducing Vibrio parahaemolyti-cus in seafood: A review. Journal of Food Science, 80(1), R10–R19. https://doi.org/10.1111/1750-3841.12727

Yoon, J. H., Woo, Y. J., & Lee, S. Y. (2025). Induction of a viable but nonculturable state in Vibrio parahaemolyticus by a high concentration of salt and its impact on fatty acid com-position profile and membrane potential. Lebensmittel-Wissenschaft und Technologie, 216, 110. https://doi.org/10.1016/j.lwt.2025.117329

Zarei, M., Eskandari, M. H., & Keshtkaran, S. (2014). Survival of normal and chlorine-stressed pathogenic and non-pathogenic Vibrio parahaemolyticus under adverse condi-tions. Jundishapur Journal of Microbiology, 7(3), 16. https://doi.org/10.5812/jjm.9313

Zhu, X., Yan, H., Manoli, T., Cui, Z., Mo, H., Li, H., & Hu, L. (2023). Ultrasound-assisted blue light killing Vibrio parahaemolyticus to improve salmon preservation. Ultrasonics Sonochemistry, 95, 114. https://doi.org/10.1016/j.ultsonch.2023.106389

Downloads

Published

2025-07-04

How to Cite

Darmawan, . A., Kusumaningrum, . H. D., Wulandari, . N., Nurjanah, . S., & Sugiarto, . A. T. (2025). Effect of pulsed electric field on the number and cell membrane of Vibrio parahaemolyticus in salted squid: Pengaruh medan listrik berdenyut terhadap jumlah total dan membran sel Vibrio parahaemolyticus pada cumi asin. Jurnal Pengolahan Hasil Perikanan Indonesia, 28(6), 559-573. https://doi.org/10.17844/jphpi.v28i6.63292