Antifouling properties of green seaweed Halimeda opuntia from the Coast of Aceh, Indonesia
Sifat antifouling Halimeda opuntia dari Pesisir Aceh, Indonesia
DOI:
https://doi.org/10.17844/jphpi.v28i6.63699Keywords:
antibiofilm, bacterial, cytotoxicity, green seaweed, Pseudomonas aeruginosaAbstract
Marine biofouling remains a critical challenge in the maritime sector, prompting researchers to explore sustainable, eco-friendly, and antifouling solutions derived from marine organisms. This study aimed to determine the optimal concentration of H. opuntia extract for effective antifouling activity. The research methods included antibiofilm, cytotoxicity, antibacterial, anti-quorum sensing assays, and in situ tests. The results revealed that the methanol extracts of H. opuntia exhibited significantly higher antibiofilm activity, with an IC50 value of 0.020 mg/mL. Cytotoxicity assays demonstrated the lowest toxicity against the L6 cell line, with an IC50 value of 70.79 µg/mL. Mechanistically, the H. opuntia methanol extract did not exhibit a bactericidal effect against Pseudomonas aeruginosa but blocked bacterial communication mechanisms through quorum quenching activity, as evidenced by the formation of colorless opaque zones in reporter assays. In situ trials were conducted in the waters of Redang Island and Kuala Kemaman, Malaysia. Panels coated with H. opuntia 5% extract demonstrated superior antifouling performance over three months, with fouling coverage rates of 11.19% and 9.10%, respectively. Further research is needed on the antifouling properties of H. opuntia to identify its active compounds, evaluate its long-term effectiveness, and determine whether it is cost-efficient for mass production.
References
Abdulrahman, I., Jamal, M. T., Pugazhendi, A., Dhavamani, J., & Satheesh, S. (2022). Antibiofilm activity of secondary metabolites from bacterial endophytes of Red Sea soft corals. International Biodeterioration & Biodegradation, 173, 105462. https://doi.org/10.1016/J.IBIOD.2022.105462
Andriani, Y., Ramli, N. M., Syamsumir, D. F., Kassim, M. N. I., Jaafar, J., Aziz, N. A., Marlina, L., Musa, N. S., & Mohamad, H. (2019). Phytochemical analysis, antioxidant, antibacterial and cytotoxicity properties of keys and cores part of Pandanus tectorius fruits. Arabian Journal of Chemistry, 12(8), 3555–3564. https://doi.org/10.1016/J.ARABJC.2015.11.003
Avelino-Jiménez, I. A., Hernández-Maya, L., Larios-Serrato, V., Quej-Ake, L., Castelán-Sánchez, H., Herrera-Díaz, J., Garibay-Febles, V., Rivera-Olvera, J. N., Zavala-Olivares, G., & Zapata-Peñasco, I. (2023). Biofouling and biocorrosion by microbiota from a marine oil pipeline: A metagenomic and proteomic approach. Journal of Environmental Chemical Engineering, 11(2), 109413. https://doi.org/10.1016/J.JECE.2023.109413
Azizi, W. A., Ekantari, N., & Husni, A. (2019). Inhibitory activity of Sargassum hystrix extract and its methanolic fractions on inhibiting α-glucosidase activity. Indonesian Journal of Pharmacy, 30(1), 35–42. https://doi.org/10.14499/indonesianjpharm30iss1pp36
Beaumont, A. R., & Budd, M. D. (1984). High mortality of the larvae of the common mussel at low concentrations of tributyltin. Marine Pollution Bulletin, 15(11), 402–405. https://doi.org/10.1016/0025-326X(84)90256-X
Bhowmick, S., Mazumdar, A., Moulick, A., & Adam, V. (2020). Algal metabolites: An inevitable substitute for antibiotics. Biotechnology Advances, 43, 107571. https://doi.org/10.1016/J.BIOTECHADV.2020.107571
Borchardt, S. A., Allain, E. J., Michels, J. J., Stearns, G. W., Kelly, R. F., & McCoy, W. F. (2001). Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Applied and Environmental Microbiology, 67(7), 3174–3179. https://doi.org/10.1128/AEM.67.7.3174-3179.2001/ASSET/653F42B7-37F6-48E9-8049-70A69150BDA9/ASSETS/GRAPHIC/AM0710054004.JPEG
Caruso, G. (2020). Microbial Colonization in Marine Environments: Overview of Current Knowledge and Emerging Research Topics. Journal of Marine Science and Engineering 78, 8(2), 78. https://doi.org/10.3390/JMSE8020078
Cima, F., & Varello, R. (2023). Immunotoxic effects of exposure to the antifouling copper(I) biocide on target and nontarget bivalve species: a comparative in vitro study between Mytilus galloprovincialis and Ruditapes philippinarum. Frontiers in Physiology, 14, 1230943. https://doi.org/10.3389/FPHYS.2023.1230943
Cooney, C., Sommer, B., Marzinelli, E. M., & Figueira, W. F. (2024). The role of microbial biofilms in range shifts of marine habitat-forming organisms. Trends in Microbiology, 32(2), 190–199. https://doi.org/10.1016/J.TIM.2023.07.015
Dahms, H. U., & Dobretsov, S. (2017). Antifouling Compounds from Marine Macroalgae. Marine Drugs 2017, Vol. 15, Page 265, 15(9), 265. https://doi.org/10.3390/MD15090265
Demirel, Y. K., Hunsucker, K. Z., Lejars, M., & Georgiades, E. (2022). Editorial: Impact and Management of Marine Biofouling. Frontiers in Marine Science, 9, 958812. https://doi.org/10.3389/FMARS.2022.958812/BIBTEX
Deshmukh K. V, P., Mangesh Moharil, P. V., Khelurkar, I. C., Ingle, K. P., Deshmukh, A. G., Padole, D. A., Dudhare, M. S., Moharil, M. P., & Khelurkar, V. C. (2017). Phytochemicals: Extraction methods, identification and detection of bioactive compounds from plant extracts. Journal of Pharmacognosy and Phytochemistry, 6(1), 32–36. https://www.phytojournal.com/archives/2017.v6.i1.1058/phytochemicals-extraction-methods-identification-and-detection-of-bioactive-compounds-from-plant-extracts
Diansyah, S., Kusumawati, I., & Hardinata, F. (2018). Inventarisasi jenis-jenis makroalga di Pantai Lhok Bubon Kecamatan Samatiga Kabupaten Aceh Barat. Jurnal perikanan tropis, 5(1), 93. https://doi.org/10.35308/JPT.V5I1.1029
Erniati, Meurah Nurul, C., Shobara, W., Nasuha, J., Hasonangan Ritonga, G., Mayulina Daulay, A., Romansah, H., Amni, I., & Lambok Berutu, T. (2022). Rumput laut yang tumbuh alami di Pantai Barat Pulau Simeulue, Aceh Indonesia: faktor lingkungan dan variasi geografik. Jurnal Kelautan Tropis, 25(1), 29–38. https://doi.org/10.14710/JKT.V25I1.12645
Farizan, A., Nurhanis Amira Nik Mohd Sukrri, N., Mohd Ramzi, M., Najihah Rawi, N., Izzati Abd Rahman, N., Bakar, K., Yong Fu Siong, J., Sifzizul Tengku Muhammad, T., Khusairi Azemi, A., & Ismail, N. (2024). Melaleuca cajuputi: Metabolites profiling and its potential against biofouling. Egyptian Journal of Aquatic Research. https://doi.org/10.1016/J.EJAR.2024.06.005
Freckelton, M. L., Nedved, B. T., Cai, Y. S., Cao, S., Turano, H., Alegado, R. A., & Hadfield, M. G. (2022). Bacterial lipopolysaccharide induces settlement and metamorphosis in a marine larva. Proceedings of the National Academy of Sciences of the United States of America, 119(18), e2200795119. https://doi.org/10.1073/PNAS.2200795119/SUPPL_FILE/PNAS.2200795119.SAPP.PDF
Gadhi, A. A. A., El-Sherbiny, M. M. O., Al-Sofyani, A. M. A., Ba-Akdah, M. A., & Satheesh, S. (2018). Antibiofilm activities of extracts of the macroalga Halimeda sp. from the Red Sea. Journal of Marine Science and Technology, 26(6), 838–846. https://doi.org/10.6119/JMST.201812_26(6).0008
Gazali, M. (2018). Aktivitas inhibitor tirosinase rumput laut Halimeda spp dari Pesisir Aceh Barat. Jurnal perikanan tropis, 5(2), 149. https://doi.org/10.35308/JPT.V5I2.1034
Gazali, M., Fatimah, A. N., Husni, A., Nurjanah, Zuriat, & Syafitri, R. (2024). Antioxidant and anti-arthritic activities of green seaweed Halimeda tuna methanolic extract. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 19(1), 45–54. https://doi.org/10.15578/squalen.841
Gazali, M., Husni, A., Sukmadewi, A. P., Nurjanah, Nursid, M., Andriani, Y., Zuriat, Hasanah, U., & Syafitri, R. (2024). Anticancer activity of marine macroalgae Halimeda tuna from Aceh Waters against cervical cancer cells. Journal of Fisheries and Environment, 48(3), 120–131.
Gazali, M., Jolanda, O., Husni, A., Nurjanah, Majid, F. A. A., Zuriat, & Syafitri, R. (2023). In Vitro α-amylase and α-glucosidase inhibitory activity of green seaweed Halimeda tuna extract from the Coast of Lhok Bubon, Aceh. Plants, 12(2), 393. https://doi.org/10.3390/PLANTS12020393
Gazali, M., Nurjanah, ., & Zamani, N. P. (2019a). Skreening alga hijau Halimeda opuntia (Linnaeus) sebagai antioksidan dari Pesisir Aceh Barat. Jurnal Ilmu Pertanian Indonesia, 24(3), 267–272. https://doi.org/10.18343/jipi.24.3.267
Gazali, M., Nurjanah, & Zamani, N. P. (2019b). The screening of bioactive compound of the green algae Halimeda macroloba (Decaisne, 1841) as an antioxidant agent from Banyak Island Aceh Singkil. IOP Conference Series: Earth and Environmental Science, 348(1). https://doi.org/10.1088/1755-1315/348/1/012043
Goecke, F., Labes, A., Wiese, J., & Imhoff, J. F. (2010). Chemical interactions between marine macroalgae and bacteria. Marine Ecology Progress Series, 409, 267–299. https://doi.org/10.3354/MEPS08607
Guo, H., Li, M., Dong, C., Li, J., Wang, M., Liu, X., & Hou, Y. (2025). Bioinspired dual-defensive antifouling nanofiltration membranes reinforced by well-regulated surface wettability for enhanced industrial effluent reclamation. Journal of Membrane Science, 729, 124128. https://doi.org/10.1016/J.MEMSCI.2025.124128
Husni, A., Gazali, M., Nurjanah, N., Syafitri, R., Matin, A., & Zuriat, Z. (2024). Cytotoxic activity of green seaweed Halimeda tuna methanolic extract against lung cancer cells. Journal of Multidisciplinary Applied Natural Science, 4(1), 16–29. https://doi.org/10.47352/jmans.2774-3047.172
Indraningrat, A. A. G., Purnami, P. P. C. P., Damayanti, E., Wijaya, M. D., Masyeni, D. A. P. S., & Sari, N. L. P. E. K. (2024). Antibacterial potential of Pseudomonas aeruginosa ISP1RL4 Isolated from Seaweed Eucheuma cottonii against Multidrug-resistant Bacteria. Biomedical and Pharmacology Journal, 17(4), 2341–2354. https://doi.org/10.13005/bpj/3029
Jae-Suk Choi , Yu-Mi Ha , Bo-Bae Lee , Hye Eun Moon, K. K. C. and I. S. C. (2010). Seasonal variation of antibacterial activities in the green alga Ulva pertusa Kjellman. 541, 539–541.
Jha, B., Kavita, K., Westphal, J., Hartmann, A., & Schmitt-Kopplin, P. (2013). Quorum sensing inhibition by Asparagopsis taxiformis, a Marine macroalga: separation of the compound that interrupts bacterial communication. Marine Drugs 11(1), 253–265. https://doi.org/10.3390/MD11010253
Kanagasabhapathy, M., Yamazaki, G., Ishida, A., Sasaki, H., & Nagata, S. (2009). Presence of quorum‐sensing inhibitor‐like compounds from bacteria isolated from the brown alga Colpomenia sinuosa. Letters in Applied Microbiology, 49(5), 573–579. https://doi.org/10.1111/J.1472-765X.2009.02712.X
Kang, J. Y., Bangoura, I., Cho, J. Y., Joo, J., Choi, Y. S., Hwang, D. S., & Hong, Y. K. (2016). Antifouling effects of the periostracum on algal spore settlement in the mussel Mytilus edulis. Fisheries and Aquatic Sciences, 19(1), 1–6. https://doi.org/10.1186/S41240-016-0007-Y/FIGURES/2
Kumar, S., Costantino, V., Venturi, V., & Steindler, L. (2017). Quorum Sensing Inhibitors from the Sea Discovered Using Bacterial N-acyl-homoserine Lactone-Based Biosensors. Marine Drugs 2017, Vol. 15, Page 53, 15(3), 53. https://doi.org/10.3390/MD15030053
Lau, S. C. K., & Qian, P. Y. (2001). Larval settlement in the serpulid polychaete Hydroides elegans in response to bacterial films: An investigation of the nature of putative larval settlement cue. Marine Biology, 138(2), 321–328. https://doi.org/10.1007/S002270000453/METRICS
Mohd Ramzi, M, Rahman, A., Feng, D., Salta, M., Ma, C., Izzati Abd Rahman, N., Najihah Rawi, N., Bhubalan, K., Ariffin, F., Wini Mazlan, N., Saidin, J., Danish-Daniel, M., Yong Fu Siong, J., Bakar, K., Atikah Mohd Zin, N., Khusairi Azemi, A., & Ismail, N. (2023). Antifouling potential of Diadema setosum and Sonneratia lanceolata extracts for marine applications. Journal of Marine Science and Engineering 2023, 11(3), 602. https://doi.org/10.3390/JMSE11030602
Muthukrishnan, T., Hassenrück, C., Al Fahdi, D., Jose, L., Al Senafi, F., Mahmoud, H., & Abed, R. M. M. (2022). Monthly Succession of Biofouling Communities and Corresponding Inter-Taxa Associations in the North- and South-West of the Arabian Gulf. Frontiers in Marine Science, 1–16. https://doi.org/10.3389/fmars.2021.787879
Nik Mohd Sukrri, N. N. A., Farizan, A. F., Mohd Ramzi, M., Rawi, N. N., Abd Rahman, N. I., Bakar, K., Fu Siong, J. Y., Azemi, A. K., & Ismail, N. (2024). Antifouling activity of Malaysian green seaweed Ulva lactuca and its isolated non-polar compound. Heliyon, 10(19), e38366. https://doi.org/10.1016/J.HELIYON.2024.E38366
Noor Idora, M. S., Ferry, M., Wan Nik, W. B., & Jasnizat, S. (2015). Evaluation of tannin from Rhizophora apiculata as natural antifouling agents in epoxy paint for marine application. Progress in Organic Coatings, 81, 125–131. https://doi.org/10.1016/J.PORGCOAT.2014.12.012
Oktaviani, D. F., Nursatya, S. M., Tristiani, F., Faozi, A. N., Saputra, R. H., Nur Meinita, M. D., & Riyanti. (2019). Antibacterial Activity From Seaweeds Turbinaria ornata and Chaetomorpha antennina Against Fouling Bacteria. IOP Conference Series: Earth and Environmental Science, 255(1), 012045. https://doi.org/10.1088/1755-1315/255/1/012045
Poornima Vijayan, P., Formela, K., Saeb, M. R., Chithra, P. G., & Thomas, S. (2022). Integration of antifouling properties into epoxy coatings: a review. Journal of Coatings Technology and Research, 19(1), 269–284. https://doi.org/10.1007/S11998-021-00555-0/METRICS
Prabhakaran, S., Rajaram, R., Balasubramanian, V., & Mathivanan, K. (2012). Antifouling potentials of extracts from seaweeds, seagrasses and mangroves against primary biofilm forming bacteria. Asian Pacific Journal of Tropical Biomedicine, 2(1), S316–S322. https://doi.org/10.1016/S2221-1691(12)60181-6
Richard, K. N., Hunsucker, K. Z., Hunsucker, T., & Swain, G. (2024). The Benefits of Biofouling – Promoting the Growth of Benthic Organisms to Enhance Ecosystem Services. Journal of Ecological Engineering, 25(9), 133–155. https://doi.org/10.12911/22998993/190642
Roepke, L. K., Brefeld, D., Soltmann, U., Randall, C. J., Negri, A. P., & Kunzmann, A. (2022). Antifouling coatings can reduce algal growth while preserving coral settlement. Scientific Reports, 12(1), 1–14. https://doi.org/10.1038/s41598-022-19997-6
Satasiya, G., Kumar, M. A., & Ray, S. (2025). Biofouling dynamics and antifouling innovations: Transitioning from traditional biocides to nanotechnological interventions. Environmental Research, 269, 120943. https://doi.org/10.1016/J.ENVRES.2025.120943
Shannon, E., & Abu-Ghannam, N. (2016). Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications. Marine Drugs 14(4), 81. https://doi.org/10.3390/MD14040081
Talebi Bezmin Abadi, A., Rizvanov, A. A., Haertlé, T., & Blatt, N. L. (2019). World Health Organization Report: Current Crisis of Antibiotic Resistance. BioNanoScience, 9(4), 778–788. https://doi.org/10.1007/S12668-019-00658-4/TABLES/1
Tang, J., Wang, W., & Chu, W. (2020). Antimicrobial and Anti-Quorum Sensing Activities of Phlorotannins From Seaweed (Hizikia fusiforme). Frontiers in Cellular and Infection Microbiology, 10, 586750. https://doi.org/10.3389/FCIMB.2020.586750
Tunkal, R. I., Jamal, M. T., Abdulrahman, I., Pugazhendi, A., & Satheesh, S. (2022). Antifouling activity of bacterial extracts associated with soft coral and macroalgae from the Red Sea. Oceanological and Hydrobiological Studies, 51(4), 325–336. https://doi.org/10.26881/oahs-2022.4.02
Zhang, H., Ding, Q., Zhang, Y., Lu, G., Liu, Y., & Tong, Y. (2024). Prevention and Control of Biofouling Coatings in Limnoperna fortunei: A Review of Research Progress and Strategies. Polymers 16(21), 3070. https://doi.org/10.3390/POLYM16213070
Zhao, A., Sun, J., & Liu, Y. (2023). Understanding bacterial biofilms: from definition to treatment strategies. Frontiers in Cellular and Infection Microbiology, 13, 1137947. https://doi.org/10.3389/FCIMB.2023.1137947/FULL
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.






