Antifouling properties of green seaweed Halimeda opuntia from the Coast of Aceh, Indonesia

Sifat antifouling Halimeda opuntia dari Pesisir Aceh, Indonesia

Authors

  • Mohamad Gazali Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu https://orcid.org/0000-0001-7575-3582
  • Noraznawati Ismail Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu https://orcid.org/0000-0002-9845-4144
  • Jasnizat Saidin Faculty of Science and Marine Environment, Universiti Malaysia Terengganu https://orcid.org/0000-0003-0634-6857
  • Kamariah Bakar Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu
  • Julius Yong Fu Siong Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu

DOI:

https://doi.org/10.17844/jphpi.v28i6.63699

Keywords:

antibiofilm, bacterial, cytotoxicity, green seaweed, Pseudomonas aeruginosa

Abstract

Marine biofouling remains a critical challenge in the maritime sector, prompting researchers to explore sustainable, eco-friendly, and antifouling solutions derived from marine organisms. This study aimed to determine the optimal concentration of H. opuntia extract for effective antifouling activity. The research methods included antibiofilm, cytotoxicity, antibacterial, anti-quorum sensing assays, and in situ tests. The results revealed that the methanol extracts of H. opuntia exhibited significantly higher antibiofilm activity, with an IC50 value of 0.020 mg/mL. Cytotoxicity assays demonstrated the lowest toxicity against the L6 cell line, with an IC50 value of 70.79 µg/mL. Mechanistically, the H. opuntia methanol extract did not exhibit a bactericidal effect against Pseudomonas aeruginosa but blocked bacterial communication mechanisms through quorum quenching activity, as evidenced by the formation of colorless opaque zones in reporter assays. In situ trials were conducted in the waters of Redang Island and Kuala Kemaman, Malaysia. Panels coated with H. opuntia 5% extract demonstrated superior antifouling performance over three months, with fouling coverage rates of 11.19% and 9.10%, respectively. Further research is needed on the antifouling properties of H. opuntia to identify its active compounds, evaluate its long-term effectiveness, and determine whether it is cost-efficient for mass production.

References

Abdulrahman, I., Jamal, M. T., Pugazhendi, A., Dhavamani, J., & Satheesh, S. (2022). Antibiofilm activity of secondary metabolites from bacterial endophytes of Red Sea soft corals. International Biodeterioration & Biodegradation, 173, 105462. https://doi.org/10.1016/J.IBIOD.2022.105462

Andriani, Y., Ramli, N. M., Syamsumir, D. F., Kassim, M. N. I., Jaafar, J., Aziz, N. A., Marlina, L., Musa, N. S., & Mohamad, H. (2019). Phytochemical analysis, antioxidant, antibacterial and cytotoxicity properties of keys and cores part of Pandanus tectorius fruits. Arabian Journal of Chemistry, 12(8), 3555–3564. https://doi.org/10.1016/J.ARABJC.2015.11.003

Avelino-Jiménez, I. A., Hernández-Maya, L., Larios-Serrato, V., Quej-Ake, L., Castelán-Sánchez, H., Herrera-Díaz, J., Garibay-Febles, V., Rivera-Olvera, J. N., Zavala-Olivares, G., & Zapata-Peñasco, I. (2023). Biofouling and biocorrosion by microbiota from a marine oil pipeline: A metagenomic and proteomic approach. Journal of Environmental Chemical Engineering, 11(2), 109413. https://doi.org/10.1016/J.JECE.2023.109413

Azizi, W. A., Ekantari, N., & Husni, A. (2019). Inhibitory activity of Sargassum hystrix extract and its methanolic fractions on inhibiting α-glucosidase activity. Indonesian Journal of Pharmacy, 30(1), 35–42. https://doi.org/10.14499/indonesianjpharm30iss1pp36

Beaumont, A. R., & Budd, M. D. (1984). High mortality of the larvae of the common mussel at low concentrations of tributyltin. Marine Pollution Bulletin, 15(11), 402–405. https://doi.org/10.1016/0025-326X(84)90256-X

Bhowmick, S., Mazumdar, A., Moulick, A., & Adam, V. (2020). Algal metabolites: An inevitable substitute for antibiotics. Biotechnology Advances, 43, 107571. https://doi.org/10.1016/J.BIOTECHADV.2020.107571

Borchardt, S. A., Allain, E. J., Michels, J. J., Stearns, G. W., Kelly, R. F., & McCoy, W. F. (2001). Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Applied and Environmental Microbiology, 67(7), 3174–3179. https://doi.org/10.1128/AEM.67.7.3174-3179.2001/ASSET/653F42B7-37F6-48E9-8049-70A69150BDA9/ASSETS/GRAPHIC/AM0710054004.JPEG

Caruso, G. (2020). Microbial Colonization in Marine Environments: Overview of Current Knowledge and Emerging Research Topics. Journal of Marine Science and Engineering 78, 8(2), 78. https://doi.org/10.3390/JMSE8020078

Cima, F., & Varello, R. (2023). Immunotoxic effects of exposure to the antifouling copper(I) biocide on target and nontarget bivalve species: a comparative in vitro study between Mytilus galloprovincialis and Ruditapes philippinarum. Frontiers in Physiology, 14, 1230943. https://doi.org/10.3389/FPHYS.2023.1230943

Cooney, C., Sommer, B., Marzinelli, E. M., & Figueira, W. F. (2024). The role of microbial biofilms in range shifts of marine habitat-forming organisms. Trends in Microbiology, 32(2), 190–199. https://doi.org/10.1016/J.TIM.2023.07.015

Dahms, H. U., & Dobretsov, S. (2017). Antifouling Compounds from Marine Macroalgae. Marine Drugs 2017, Vol. 15, Page 265, 15(9), 265. https://doi.org/10.3390/MD15090265

Demirel, Y. K., Hunsucker, K. Z., Lejars, M., & Georgiades, E. (2022). Editorial: Impact and Management of Marine Biofouling. Frontiers in Marine Science, 9, 958812. https://doi.org/10.3389/FMARS.2022.958812/BIBTEX

Deshmukh K. V, P., Mangesh Moharil, P. V., Khelurkar, I. C., Ingle, K. P., Deshmukh, A. G., Padole, D. A., Dudhare, M. S., Moharil, M. P., & Khelurkar, V. C. (2017). Phytochemicals: Extraction methods, identification and detection of bioactive compounds from plant extracts. Journal of Pharmacognosy and Phytochemistry, 6(1), 32–36. https://www.phytojournal.com/archives/2017.v6.i1.1058/phytochemicals-extraction-methods-identification-and-detection-of-bioactive-compounds-from-plant-extracts

Diansyah, S., Kusumawati, I., & Hardinata, F. (2018). Inventarisasi jenis-jenis makroalga di Pantai Lhok Bubon Kecamatan Samatiga Kabupaten Aceh Barat. Jurnal perikanan tropis, 5(1), 93. https://doi.org/10.35308/JPT.V5I1.1029

Erniati, Meurah Nurul, C., Shobara, W., Nasuha, J., Hasonangan Ritonga, G., Mayulina Daulay, A., Romansah, H., Amni, I., & Lambok Berutu, T. (2022). Rumput laut yang tumbuh alami di Pantai Barat Pulau Simeulue, Aceh Indonesia: faktor lingkungan dan variasi geografik. Jurnal Kelautan Tropis, 25(1), 29–38. https://doi.org/10.14710/JKT.V25I1.12645

Farizan, A., Nurhanis Amira Nik Mohd Sukrri, N., Mohd Ramzi, M., Najihah Rawi, N., Izzati Abd Rahman, N., Bakar, K., Yong Fu Siong, J., Sifzizul Tengku Muhammad, T., Khusairi Azemi, A., & Ismail, N. (2024). Melaleuca cajuputi: Metabolites profiling and its potential against biofouling. Egyptian Journal of Aquatic Research. https://doi.org/10.1016/J.EJAR.2024.06.005

Freckelton, M. L., Nedved, B. T., Cai, Y. S., Cao, S., Turano, H., Alegado, R. A., & Hadfield, M. G. (2022). Bacterial lipopolysaccharide induces settlement and metamorphosis in a marine larva. Proceedings of the National Academy of Sciences of the United States of America, 119(18), e2200795119. https://doi.org/10.1073/PNAS.2200795119/SUPPL_FILE/PNAS.2200795119.SAPP.PDF

Gadhi, A. A. A., El-Sherbiny, M. M. O., Al-Sofyani, A. M. A., Ba-Akdah, M. A., & Satheesh, S. (2018). Antibiofilm activities of extracts of the macroalga Halimeda sp. from the Red Sea. Journal of Marine Science and Technology, 26(6), 838–846. https://doi.org/10.6119/JMST.201812_26(6).0008

Gazali, M. (2018). Aktivitas inhibitor tirosinase rumput laut Halimeda spp dari Pesisir Aceh Barat. Jurnal perikanan tropis, 5(2), 149. https://doi.org/10.35308/JPT.V5I2.1034

Gazali, M., Fatimah, A. N., Husni, A., Nurjanah, Zuriat, & Syafitri, R. (2024). Antioxidant and anti-arthritic activities of green seaweed Halimeda tuna methanolic extract. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 19(1), 45–54. https://doi.org/10.15578/squalen.841

Gazali, M., Husni, A., Sukmadewi, A. P., Nurjanah, Nursid, M., Andriani, Y., Zuriat, Hasanah, U., & Syafitri, R. (2024). Anticancer activity of marine macroalgae Halimeda tuna from Aceh Waters against cervical cancer cells. Journal of Fisheries and Environment, 48(3), 120–131.

Gazali, M., Jolanda, O., Husni, A., Nurjanah, Majid, F. A. A., Zuriat, & Syafitri, R. (2023). In Vitro α-amylase and α-glucosidase inhibitory activity of green seaweed Halimeda tuna extract from the Coast of Lhok Bubon, Aceh. Plants, 12(2), 393. https://doi.org/10.3390/PLANTS12020393

Gazali, M., Nurjanah, ., & Zamani, N. P. (2019a). Skreening alga hijau Halimeda opuntia (Linnaeus) sebagai antioksidan dari Pesisir Aceh Barat. Jurnal Ilmu Pertanian Indonesia, 24(3), 267–272. https://doi.org/10.18343/jipi.24.3.267

Gazali, M., Nurjanah, & Zamani, N. P. (2019b). The screening of bioactive compound of the green algae Halimeda macroloba (Decaisne, 1841) as an antioxidant agent from Banyak Island Aceh Singkil. IOP Conference Series: Earth and Environmental Science, 348(1). https://doi.org/10.1088/1755-1315/348/1/012043

Goecke, F., Labes, A., Wiese, J., & Imhoff, J. F. (2010). Chemical interactions between marine macroalgae and bacteria. Marine Ecology Progress Series, 409, 267–299. https://doi.org/10.3354/MEPS08607

Guo, H., Li, M., Dong, C., Li, J., Wang, M., Liu, X., & Hou, Y. (2025). Bioinspired dual-defensive antifouling nanofiltration membranes reinforced by well-regulated surface wettability for enhanced industrial effluent reclamation. Journal of Membrane Science, 729, 124128. https://doi.org/10.1016/J.MEMSCI.2025.124128

Husni, A., Gazali, M., Nurjanah, N., Syafitri, R., Matin, A., & Zuriat, Z. (2024). Cytotoxic activity of green seaweed Halimeda tuna methanolic extract against lung cancer cells. Journal of Multidisciplinary Applied Natural Science, 4(1), 16–29. https://doi.org/10.47352/jmans.2774-3047.172

Indraningrat, A. A. G., Purnami, P. P. C. P., Damayanti, E., Wijaya, M. D., Masyeni, D. A. P. S., & Sari, N. L. P. E. K. (2024). Antibacterial potential of Pseudomonas aeruginosa ISP1RL4 Isolated from Seaweed Eucheuma cottonii against Multidrug-resistant Bacteria. Biomedical and Pharmacology Journal, 17(4), 2341–2354. https://doi.org/10.13005/bpj/3029

Jae-Suk Choi , Yu-Mi Ha , Bo-Bae Lee , Hye Eun Moon, K. K. C. and I. S. C. (2010). Seasonal variation of antibacterial activities in the green alga Ulva pertusa Kjellman. 541, 539–541.

Jha, B., Kavita, K., Westphal, J., Hartmann, A., & Schmitt-Kopplin, P. (2013). Quorum sensing inhibition by Asparagopsis taxiformis, a Marine macroalga: separation of the compound that interrupts bacterial communication. Marine Drugs 11(1), 253–265. https://doi.org/10.3390/MD11010253

Kanagasabhapathy, M., Yamazaki, G., Ishida, A., Sasaki, H., & Nagata, S. (2009). Presence of quorum‐sensing inhibitor‐like compounds from bacteria isolated from the brown alga Colpomenia sinuosa. Letters in Applied Microbiology, 49(5), 573–579. https://doi.org/10.1111/J.1472-765X.2009.02712.X

Kang, J. Y., Bangoura, I., Cho, J. Y., Joo, J., Choi, Y. S., Hwang, D. S., & Hong, Y. K. (2016). Antifouling effects of the periostracum on algal spore settlement in the mussel Mytilus edulis. Fisheries and Aquatic Sciences, 19(1), 1–6. https://doi.org/10.1186/S41240-016-0007-Y/FIGURES/2

Kumar, S., Costantino, V., Venturi, V., & Steindler, L. (2017). Quorum Sensing Inhibitors from the Sea Discovered Using Bacterial N-acyl-homoserine Lactone-Based Biosensors. Marine Drugs 2017, Vol. 15, Page 53, 15(3), 53. https://doi.org/10.3390/MD15030053

Lau, S. C. K., & Qian, P. Y. (2001). Larval settlement in the serpulid polychaete Hydroides elegans in response to bacterial films: An investigation of the nature of putative larval settlement cue. Marine Biology, 138(2), 321–328. https://doi.org/10.1007/S002270000453/METRICS

Mohd Ramzi, M, Rahman, A., Feng, D., Salta, M., Ma, C., Izzati Abd Rahman, N., Najihah Rawi, N., Bhubalan, K., Ariffin, F., Wini Mazlan, N., Saidin, J., Danish-Daniel, M., Yong Fu Siong, J., Bakar, K., Atikah Mohd Zin, N., Khusairi Azemi, A., & Ismail, N. (2023). Antifouling potential of Diadema setosum and Sonneratia lanceolata extracts for marine applications. Journal of Marine Science and Engineering 2023, 11(3), 602. https://doi.org/10.3390/JMSE11030602

Muthukrishnan, T., Hassenrück, C., Al Fahdi, D., Jose, L., Al Senafi, F., Mahmoud, H., & Abed, R. M. M. (2022). Monthly Succession of Biofouling Communities and Corresponding Inter-Taxa Associations in the North- and South-West of the Arabian Gulf. Frontiers in Marine Science, 1–16. https://doi.org/10.3389/fmars.2021.787879

Nik Mohd Sukrri, N. N. A., Farizan, A. F., Mohd Ramzi, M., Rawi, N. N., Abd Rahman, N. I., Bakar, K., Fu Siong, J. Y., Azemi, A. K., & Ismail, N. (2024). Antifouling activity of Malaysian green seaweed Ulva lactuca and its isolated non-polar compound. Heliyon, 10(19), e38366. https://doi.org/10.1016/J.HELIYON.2024.E38366

Noor Idora, M. S., Ferry, M., Wan Nik, W. B., & Jasnizat, S. (2015). Evaluation of tannin from Rhizophora apiculata as natural antifouling agents in epoxy paint for marine application. Progress in Organic Coatings, 81, 125–131. https://doi.org/10.1016/J.PORGCOAT.2014.12.012

Oktaviani, D. F., Nursatya, S. M., Tristiani, F., Faozi, A. N., Saputra, R. H., Nur Meinita, M. D., & Riyanti. (2019). Antibacterial Activity From Seaweeds Turbinaria ornata and Chaetomorpha antennina Against Fouling Bacteria. IOP Conference Series: Earth and Environmental Science, 255(1), 012045. https://doi.org/10.1088/1755-1315/255/1/012045

Poornima Vijayan, P., Formela, K., Saeb, M. R., Chithra, P. G., & Thomas, S. (2022). Integration of antifouling properties into epoxy coatings: a review. Journal of Coatings Technology and Research, 19(1), 269–284. https://doi.org/10.1007/S11998-021-00555-0/METRICS

Prabhakaran, S., Rajaram, R., Balasubramanian, V., & Mathivanan, K. (2012). Antifouling potentials of extracts from seaweeds, seagrasses and mangroves against primary biofilm forming bacteria. Asian Pacific Journal of Tropical Biomedicine, 2(1), S316–S322. https://doi.org/10.1016/S2221-1691(12)60181-6

Richard, K. N., Hunsucker, K. Z., Hunsucker, T., & Swain, G. (2024). The Benefits of Biofouling – Promoting the Growth of Benthic Organisms to Enhance Ecosystem Services. Journal of Ecological Engineering, 25(9), 133–155. https://doi.org/10.12911/22998993/190642

Roepke, L. K., Brefeld, D., Soltmann, U., Randall, C. J., Negri, A. P., & Kunzmann, A. (2022). Antifouling coatings can reduce algal growth while preserving coral settlement. Scientific Reports, 12(1), 1–14. https://doi.org/10.1038/s41598-022-19997-6

Satasiya, G., Kumar, M. A., & Ray, S. (2025). Biofouling dynamics and antifouling innovations: Transitioning from traditional biocides to nanotechnological interventions. Environmental Research, 269, 120943. https://doi.org/10.1016/J.ENVRES.2025.120943

Shannon, E., & Abu-Ghannam, N. (2016). Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications. Marine Drugs 14(4), 81. https://doi.org/10.3390/MD14040081

Talebi Bezmin Abadi, A., Rizvanov, A. A., Haertlé, T., & Blatt, N. L. (2019). World Health Organization Report: Current Crisis of Antibiotic Resistance. BioNanoScience, 9(4), 778–788. https://doi.org/10.1007/S12668-019-00658-4/TABLES/1

Tang, J., Wang, W., & Chu, W. (2020). Antimicrobial and Anti-Quorum Sensing Activities of Phlorotannins From Seaweed (Hizikia fusiforme). Frontiers in Cellular and Infection Microbiology, 10, 586750. https://doi.org/10.3389/FCIMB.2020.586750

Tunkal, R. I., Jamal, M. T., Abdulrahman, I., Pugazhendi, A., & Satheesh, S. (2022). Antifouling activity of bacterial extracts associated with soft coral and macroalgae from the Red Sea. Oceanological and Hydrobiological Studies, 51(4), 325–336. https://doi.org/10.26881/oahs-2022.4.02

Zhang, H., Ding, Q., Zhang, Y., Lu, G., Liu, Y., & Tong, Y. (2024). Prevention and Control of Biofouling Coatings in Limnoperna fortunei: A Review of Research Progress and Strategies. Polymers 16(21), 3070. https://doi.org/10.3390/POLYM16213070

Zhao, A., Sun, J., & Liu, Y. (2023). Understanding bacterial biofilms: from definition to treatment strategies. Frontiers in Cellular and Infection Microbiology, 13, 1137947. https://doi.org/10.3389/FCIMB.2023.1137947/FULL

Downloads

Published

2025-06-25

How to Cite

Gazali, . M. ., Ismail, . N. ., Saidin, . J., Bakar, . K., & Siong, . J. Y. F. . (2025). Antifouling properties of green seaweed Halimeda opuntia from the Coast of Aceh, Indonesia: Sifat antifouling Halimeda opuntia dari Pesisir Aceh, Indonesia . Jurnal Pengolahan Hasil Perikanan Indonesia, 28(6), 510-529. https://doi.org/10.17844/jphpi.v28i6.63699