Phycocyanin production from Galdieria sulphuraria 009 in palm oil mill effluent: growth, extraction, and antioxidant activity
Produksi fikosianin dari Galdieria sulphuraria 009 dalam limbah cair pabrik kelapa sawit: pertumbuhan, ekstraksi, dan aktivitas antioksidan
DOI:
https://doi.org/10.17844/jphpi.v28i5.63115Keywords:
biomass, carotenoid, micoalgae, pigment, POMEAbstract
Palm oil mill effluent (POME), a major byproduct of the palm oil industry in Indonesia, is generated in large volumes and poses environmental risks due to its high organic content> Microalgae offer a promising approach to reduce this waste while simultaneously producing value-added biomass products. This study aimed to determine the optimal POME concentration for microalgal growth of G. sulphuraria 009, to evaluate phycocyanin yield, and to assess its antioxidant activity. This study was initiated with a preliminary screening using 5–50% POME to identify optimal microalgal growth conditions; cultivation in bioreactors with selected concentrations (2.5%, 5.0%, and 7.5%) to evaluate growth performance and chemical yields; and analysis of antioxidant activity and pigment content in both fresh and residual biomass. The preliminary stage revealed 5% POME as the upper threshold for growth, with 2.5% supporting optimal biomass comparable to control (Allen pH 2). Higher POME levels inhibited growth due to light attenuation and ammoniacal nitrogen toxicity. 2.5% POME recorded the highest phycocyanin yield per liter, while 7.5% POME yielded the highest antioxidant activity, likely due to oxidative stress. Antioxidant assays confirmed significant antioxidant activity in all phycocyanin extracts, with the highest activity in 7.5% POME, likely due to oxidative stress. Carotenoid and chlorophyll contents were evaluated in both fresh and residual biomass. Carotenoids were more abundant in fresh biomass, while chlorophyll -A was higher in residual biomass post-extraction, emphasizing the importance of extraction techniques in bioactive compound recovery. This study highlights G. sulphuraria 009 as a viable source of phycocyanin in POME-based cultivation, offering insights into industrial wastewater valorization and sustainable bioproducts.
References
Abiusi, F., Trompetter, E., Hoenink, H., Wijffels, R.H., & Janssen, M. (2021). Autotrophic and mixotrophic biomass production of the acidophilic Galdieria sulphuraria ACUF 64. Algal Res., 60, 102513, 1-10. https://doi.org/10.1016/j.algal.2021.102513
Albertano, P., Ciniglia, C., Pinto, G., & Pollio, A. (2000). The taxonomic position of Cyanidium, Cyanidioschyzon and Galdieria: An update. Hydrobiologia, 433, 137–143. https://doi.org/10.1023/A:1004031123806
Allen, M. B. (1959). Studies with cyanidium caldarium, an anomalously pigmented chlorophyte. Arch. Mikrobiol., 32, 270–277. https://doi.org/10.1007/BF00409348
Basra, I., Silalahi, L., Pratama, W.D., & Joelyna, F.A. (2023). Pretreatment of palm oil mill effluent (POME) for Spirulina cultivation. J. Emerging Sci. Eng., 1(2), 57-62. https://doi.org/10.61435/jese.2023.12
Cai, T., Park, S.Y., & Li, Y. (2019). Nutrient recovery from wastewater streams by microalgae : Status and prospects Nutrient recovery from wastewater streams by microalgae : Status and prospects. Renew. Sustain. Energy Rev., 19, 360–369. https://doi.org/10.1016/j.rser.2012.11.030
Čížková, M., Mezricky, P., Mezricky, D., Rucki, M., Zachleder, V., & Vítová, M. (2021). Bioaccumulation of rare earth elements from waste luminophores in the red algae, Galdieria phlegrea. Waste and Biomass Valorization, 12, 3137–3146. https://doi.org/10.1007/s12649-020-01182-3
Collos, Y., & Harrison, P. J. (2014). Acclimation and toxicity of high ammonium concentrations to unicellular algae. Mar. Pollut. Bull., 80, 8–23. https://doi.org/10.1016/j.marpolbul.2014.01.006
de Marco Castro, E., Shannon, E., & Abu-Ghannam, N. (2019). Effect of fermentation on enhancing the nutraceutical properties of Arthrospira platensis (Spirulina). Fermentation, 5, 1-16. https://doi.org/10.3390/fermentation5010028
Dubois, M., Gilles, K., Hamilton, J., Rebers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350–356.
Fernandes, R., Campos, J., Serra, M., Fidalgo, J., Almeida, H., Casas, A., Toubarro, D., & Barros, A.I.R.N.A. (2023). Exploring the benefits of phycocyanin: from Spirulina cultivation to its widespread applications. Pharmaceuticals, 16(4), 592, 1-34, https://doi.org/10.3390/ph16040592
Fernando, J.S.R., Premaratne, M., Dinalankara, D.M.S.D., Perera, G.L.N.J., & Ariyadasa, T.U. (2021). Cultivation of microalgae in palm oil mill effluent (POME) for astaxanthin production and simultaneous phycoremediation. J. Environ. Chem. Eng., 9, 1-13. https://doi.org/10.1016/j.jece.2021.105375
Graverholt, O. S., & Eriksen, N. T. (2007). Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Applied Microbiology and Biotechnology, 77, 69–75. https://doi.org/10.1007/s00253-007-1150-2
Graziani, G., Schiavo, S., Nicolai, M.A., Buono, S., Fogliano, V., Pinto, G., & Pollio, A. (2013). Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria. Food Funct., 4, 144–152. https://doi.org/10.1039/c2fo30198a
Gross, W., Heilmann, I., Lenze, D., & Schnarrenberger, C. (2001). Biogeography of the cyanidiaceae (rhodophyta) based on 18s ribosomal rna sequence data. Eur. J. Phycol., 36, 275–280. https://doi.org/10.1080/09670260110001735428
Gross, W., & Schnarrenberger, C. (1995). Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol., 36, 633–638. https://doi.org/10.1093/oxfordjournals.pcp.a078803
Hadiyanto, & Azimatun Nur, M.M. (2014). Lipid extraction of microalga Chlorella sp. cultivated in palm oil mill effluent (POME) medium. World Appl. Sci. J., 31, 959–967. https://doi.org/10.5829/idosi.wasj.2014.31.05.2006
Halim, R., Hosikian, A., Lim, S., & Danquah, M.K. (2010). Chlorophyll extraction from microalgae: A review on the process engineering aspects. Int. J. Chem. Eng., 2010(1), 1-11. https://doi.org/10.1155/2010/391632
Hirooka, S., & Miyagishima, S. (2016). Cultivation of acidophilic algae Galdieria sulphuraria and Pseudochlorella sp. YKT1 in media derived from acidic hot springs. Front. Microbiol., 7, 1–11. https://doi.org/10.3389/fmicb.2016.02022
Iskandar, M. J., Baharum, A., Anuar, F. H., & Othaman, R. (2018). Palm oil industry in South East Asia and the effluent treatment technology—A review. Environ. Technol. Innov., 9, 169-185, https://doi.org/10.1016/j.eti.2017.11.003
Ismaiel, M.M.S., & Said, A.A. (2018). Tolerance of Pseudochlorella pringsheimii to Cd and Pb stress: Role of antioxidants and biochemical contents in metal detoxification. Ecotoxicol. Environ. Saf., 164, 704–712. https://doi.org/10.1016/j.ecoenv.2018.08.088
Japar, A. S., Takriff, M.S., & Mohd Yasin, N.H. (2021). Microalgae acclimatization in industrial wastewater and its effect on growth and primary metabolite composition. Algal Res., 53, 1-17. https://doi.org/10.1016/j.algal.2020.102163
Marquardt, U. (1998). Effects of carotenoid-depletion on the photosynthetic apparatus of a Galdieria sulphuraria (rhodophyta) strain that retains its photosynthetic apparatus in the dark, Journal of Plant Physiology, 152(4-5), 372–380. https://doi.org/10.1016/S0176-1617(98)80250-2
Massa, M., Buono, S., Langellotti, A.L., Martello, A., Russo, G.L., Troise, D.A., Sacchi, R., Vitaglione, P., & Fogliano, V. (2019). Biochemical composition and in vitro digestibility of Galdieria sulphuraria grown on spent cherry-brine liquid. N. Biotechnol., 53, 9–15. https://doi.org/10.1016/j.nbt.2019.06.003
Moon, M., Mishra, S.K., Kim, C.W., Suh, W.I., Park, M.S., & Yang, J.W. (2014). Isolation and characterization of thermostable phycocyanin from Galdieria sulphuraria. Korean J. Chem. Eng., 31, 490–495. https://doi.org/10.1007/s11814-013-0239-9
Nabila, R., Hidayat, W., Haryanto, A., Hasanudin, U., Agustina, D., Lee, S., Kim, Sangdo, Kim, Soohyun, Chun, D., Choi, H., Im, H., Lim, J., Kim, K., Jun, D., Moon, J., & Yoo, J. (2023). Oil palm biomass in Indonesia : thermochemical upgrading and its utilization. Renew. Sustain. Energy Rev., 176, 1-23. https://doi.org/10.1016/j.rser.2023.113193
Náhlík, V., Čížková, M., Singh, A., Mezricky, D., Rucki, M., Andresen, E., & Vítová, M. (2023). Growth of the red alga Galdieria sulphuraria in red mud-containing medium and accumulation of rare earth elements. Waste and Biomass Valorization, 14, 2179–2189. https://doi.org/10.1007/s12649-022-02021-3
Nur, M.M.A., & Buma, A.G.J. (2019). Opportunities and challenges of microalgal cultivation on wastewater, with special focus on palm oil mill effluent and the production of high value compounds. Waste and Biomass Valorization, 10, 2079–2097. https://doi.org/10.1007/s12649-018-0256-3
Nur, M.M.A., Djarot, I.N., Sasongko, N.A., Putra, A.S., & Hadiyanto (2023). Co-cultivation of Chaetoceros calcitrans and Arthrospira platensis growing on palm oil mill effluent under outdoor condition to produce fucoxanthin and c-phycocyanin. Biocatal. Agric. Biotechnol., 47, 1-10. https://doi.org/10.1016/j.bcab.2023.102611
Patel, A., Mishra, S., Pawar, R., & Ghosh, P.K. (2005). Purification and characterization of C-Phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Expr. Purif., 40, 248–255. https://doi.org/10.1016/j.pep.2004.10.028
Perez-Garcia, O., Escalante, F.M.E., de-Bashan, L.E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: metabolism and potential products. Water Res., 45, 11–36. https://doi.org/10.1016/j.watres.2010.08.037
Rahman, D.Y., Sarian, F.D., & van der Maarel, M.J.E.C. (2020). Biomass and phycocyanin content of heterotrophic Galdieria sulphuraria 074G under maltodextrin and granular starches–feeding conditions. J. Appl. Phycol., 32, 51–57. https://doi.org/10.1007/s10811-019-01957-9
Ramos, A., Acién, F.G., Fernández-Sevilla, J.M., González, C. V., & Bermejo, R. (2010). Large-scale isolation and purification of C-phycocyanin from the cyanobacteria Anabaena marina using expanded bed adsorption chromatography. J. Chem. Technol. Biotechnol., 85, 783–792. https://doi.org/10.1002/jctb.2361
Resdi, R., Shiun, J., Hesam, L., Chew, K., & Lee, T. (2016). Review of microalgae growth in palm oil mill effluent for lipid production. Clean Technol. Environ. Policy, 18, 2347–2361. https://doi.org/10.1007/s10098-016-1204-1
Ryckebosch, E., Muylaert, K., & Foubert, I. (2012). Optimization of an Analytical procedure for extraction of lipids from microalgae. J. Am. Oil Chem. Soc., 89, 189–198.
Sabilil, M.S., & Agus, S.E. (2021). Biomass composition of microalgae local mixed culture using POME (palm oil mill effluent) medium. Res. J. Biotechnol., 16, 41–50.
Salbitani, G., & Carfagna, S. (2020). Different behaviour between autotrophic and heterotrophic Galdieria sulphuraria (Rhodophyta) cells to nitrogen starvation and restoration. Impact on pigment and free amino acid contents. Int. J. Plant Biol., 11, 1–14. https://doi.org/10.4081/pb.2020.8567
Saria, F.Y.A., Suryajayaa, I.M.A., Hadiyantoa, H., & Christwardanac, M. (2022). Cultivation of microalgae Spirulina platensis in Palm Oil Mill Ef-fluent (POME) Media with variations of POME concentration and nutrient composition. J. Biores. Env. Sci., 1(2), 57-62. https://doi.org/10.14710/jbes.2022.15052
Silveira, S.T., De Menezes Quines, L.K., Burkert, C.A.V., & Kalil, S.J. (2008). Separation of phycocyanin from Spirulina platensis using ion exchange chromatography. Bioprocess Biosyst. Eng., 31, 477–482. https://doi.org/10.1007/s00449-007-0185-1
Sloth, J.K., Jensen, H.C., Pleissner, D., & Eriksen, N.T. (2017). Growth and phycocyanin synthesis in the heterotrophic microalga Galdieria sulphuraria on substrates made of food waste from restaurants and bakeries. Bioresour. Technol., 238, 296–305. https://doi.org/10.1016/j.biortech.2017.04.043
Soleimaninanadegani, M., & Manshad, S. (2014). Enhancement of biodegradation of palm oil mill effluents by local isolated microorganisms. Int. Sch. Res. Not., 2014, 1–8. https://doi.org/10.1155/2014/727049
Sundalian, M., Larissa, D., & Suprijana, O. (2021). Contents and utilization of palm oil fruit waste. Biointerface Research in Applied Chemistry, 11, 10148–10160.
Wang, J., Zhou, W., Chen, H., Zhan, J., He, C., & Wang, Q. (2019). Ammonium nitrogen tolerant Chlorella strain screening and its damaging effects on photosynthesis. Front. Microbiol., 10, 1–13. https://doi.org/10.3389/fmicb.2018.03250
Yuliani, Agustini, T. W., Dewi, E. N., & Afifah, D. N. (2023). Purifikasi fikosianin dari Spirulina platensis hasil intervensi kemangi (Ocimum basilicum) pada konsentrasi amonium sulfat berbeda. Jurnal Pengolahan Hasil Perikanan Indonesia, 26(3), 448-459. http://dx.doi.org/10.17844/jphpi.v26i3.46208
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.






