Keefektifan Bakteri Endofit dan Fungi Mikoriza Arbuskula dalam Menekan Ralstonia solanacearum pada Tanaman Eucalyptus pellita
Abstract
Effectiveness of Endophytic Bacteria and Arbuscular Mycorrhizal Fungi in Suppressing Ralstonia solanacearum in Eucalyptus pellita Plants
Bacterial wilt disease (BWD) caused by Ralstonia solanacearum is one of the important diseases of eucalyptus (Eucalyptus pellita) plants in Indonesia. One of the control technique approaches is the use of endophytic bacteria and arbuscular mycorrhizal fungi (AMF). This study was aimed to evaluate the effectiveness of endophytic bacteria and AMF in suppressing the development of bacterial wilt disease. There were ten combinations of endophytic bacteria and AMF that were tested on one month old eucalyptus seeds. Artificial inoculation of R. solanacearum was carried out three months after introduction of endophytic bacteria and AMF. Experiments were carried out in the growth chamber. The observation variables included incubation period, disease incidence, disease rate, aggressiveness of bacterial colonization by R. solanacearum, measurement of phenylalanine ammonia lyase (PAL) activity, and total phenol. The results showed that the combination of B5F1 (Paenibacillus polymyxa and Glomus mosseae) showed the highest suppression ability of the development of bacterial wilt disease in eucalyptus seedlings up to 100%. B5F1 treatment showed a longer incubation period of R. solanacearum, the lowest incidence of disease, low infection rates, and inhibited the agresiveness of R. solanacearum. Meanwhile B4F1 (Serratia marcescens and G. mosseae) was able to increase PAL activity and the highest total phenol compared to other treatments. Based on the results of this study, the threatment of B5F1 and B4F1 has the potential to control bacterial wilt disease in eucalyptus plants.
Downloads
References
Afzal I, Shinwari ZK, Sikandar S, Shahzad S. 2019. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol Res. 221:36–49. DOI: https://doi.org/10.1016/j.micres.2019.02.001.
Agustini L, Irianto RSB, Indrayadi H, Tanna RD, Fahrizawati, Faulina SA, Hidayat A, Tjahjono B, Priatna D, Turjaman M. 2020. The effects of arbuscular mycorrhizal inoculation to growth and survivability of micropropagated Eucalyptus pellita and Acacia crassicarpa in nursery. IOP Conf Ser: Earth Environ Sci. 533(1):1–11. DOI: https://doi.org/10.1088/1755-1315/533/1/012028.
Aliye N, Fininsa C, Hiskias Y. 2008. Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biol Control. 47(3):282–288. DOI: https://doi.org/10.1016/j.biocon trol.2008.09.003.
Amer GA, Utkhede RS. 2000. Development of formulations of biological agents for management of root rot of lettuce and cucumber. Can J Microbiol. 46(9):809–816. DOI: https://doi.org/10.1139/cjm-46-9-809.
Bagy HMMK, Hassan EA, Nafady NA, Dawood MFA. 2019. Efficacy of arbuscular mycorrhizal fungi and endophytic strain Epicoccum nigrum ASU11 as biocontrol agents against blackleg disease of potato caused by bacterial strain Pectobacterium carotovora subsp. atrosepticum PHY7. Biol Control. 134:103–113. DOI: https://doi.org/10.1016/j.biocontrol.2019.03.005.
Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N. 1996. Examining mycorrhizal associations. Di dalam: Lynch P, editor. Working with Mycorrhizas in Forestry and Agriculture. Canberra (AU): Australian Centre for International Agriculture Research.
Chakraborty U, Chakraborty BN, Chakraborty AP. 2010. Influence of Serratia marcescens TRS-1 on growth promotion and induction of resistance in Camellia sinensis against Fomes lamaoensis. J Plant Interact. 5(4):
–272. DOI: https://doi.org/10.1080/17429140903551738.
Chmielowska J, Deckert J, Diaz J. 2008. Activity of peroxidases and phenylalanine ammonia-lyase in lupine and soybean seedlings treated with copper and an ethylene inhibitor. Biol Lett. 45:59–67.
Collins DP, Jacobsen BJ. 2003. Optimizing a Bacillus subtilis isolate for biological control of sugar beet cercospora leaf spot. Biol Control. 26(2):153–161. DOI: https://doi.org/10.1016/S1049-9644(02)00132-9.
Coutinho TA, Wingfield MJ. 2017. Ralstonia solanacearum and R. Pseudosolanacearum on eucalyptus: Opportunists or primary pathogens? Front Plant Sci. 8(761):1–7. DOI: https://doi.org/10.3389/fpls.2017.00761.
Fonseca NR, Oliveira LSS, Guimaraes LMS, Teixeira RU, Lopes CA, Alfenas AC. 2015. An efficient inoculation method of Ralstonia solanacearum to test wilt resistance in Eucalyptus spp. Trop Plant Pathol. 41(1):42–47. DOI: https://doi.org/10.1007/s40858-015-0056-2.
Habazar T, Yanti Y, Daulay NR. 2020. In planta screening of chili roots endophyte bacteria to control bacterial wilt disease. IOP Conf Ser: Earth Environ Sci. 583:1–12. DOI: https://doi.org/10.1088/1755-1315/583/1/012021.
Hashem A, Abd-Allah EF, Alqarawi AA, Al-Huqail AA, Wirth S, Egamberdieva D. 2016. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Microbiol. 7:1–15. DOI: https://doi.org/10.3389/fmicb.2016.01089.
Hayward AC. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol. 29:65–87. DOI: https://doi.org/10.1146/annurev.py.29.090191.000433.
Jataraf J, Radhakrim NV, Hannk P, Sakoof R. 2005. Biocontrol of tomato damping-off caused by Pythium aphanidermatum. Biocontrol Sci Technol. 15:55–65. DOI: https://doi.org/10.1080/095831504000159
Jorjani M, Heydari A, Zamanizadeh HR. 2012. Controlling Sugar Beet Mortality Disease. J Plant Prot Res. 52(3):303–307. DOI: https://doi.org/10.2478/v10045-012-0049-9.
Konappa NM, Maria M, Uzma F, Krishnamurthy S, Nayaka SC, Niranjana SR, Chowdappa S. 2016. Lactic acid bacteria mediated induction of defense enzymes to enhance the resistance in tomato against Ralstonia solanacearum causing bacterial wilt. Sci Hortic. 207:183–192. DOI: https://doi.org/10.1016/j.scienta.2016.05.029.
Linderman RG. 2000. Effects of Mycorrhizas on Plant Tolerance to Diseases. Di dalam: Arbuscular Mycorrhizas: Physiology and Function. Norwell (MA): Kluwer Academic Publisher. hlm 345–365. DOI: https://doi.org/10.1007/978-94-017-0776-3_15.
Mafia RG, Alfenas AC, Maffia LA, Ferreira EM, Binoti DHB, Mafia GMV. 2009. Plant growth promoting rhizobacteria as agents in the biocontrol of eucalyptus mini-cutting rot. Trop Plant Pathol. 34(1):10–17. DOI: https://doi.org/10.1590/s1982-56762009000100002.
Mandal SM, Chakraborty D, Dey S. 2010. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav. 5(4):359–368. DOI: https://doi.org/10.4161/psb.5.4.10871.
Mansoori M, Heydari A, Hassanzadeh N, Rezaee S, Naraghi L. 2013. Evaluation of Pseudomonas and Bacillus bacterial antagonists for biological control of cotton Verticillium wilt disease. J Plant Prot Res. 53(2):154–157. DOI: https://doi.org/10.2478/jppr-2013-0023.
Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol. 9(4):1084–1090. DOI: https://doi.org/10.1111/j.1462-2920.2006.01202.x.
Pedone-Bonfim MVL, da Silva FSB, Maia LC. 2015. Production of secondary metabolites by mycorrhizal plants with medicinal or nutritional potential. Acta Physiol Plant. 37(27):1–12. DOI: https://doi.org/10.1007/s11738-015-1781-3.
Pozo MJ, Jung SC, Martınez-Medina A, Lopez-Raez JA, Azcon-Aguilar C, Barea JM. 2013. Root Allies: Arbuscular Mycorrhizal Fungi Help Plants to Cope with Biotic Stresses. Di dalam: Aroca R, editor. Soil Biology. Heidelberg (DE): Springer. hlm. 289–306. DOI: https://doi.org/10.1007/978-3-642-39317-4.
Ran L, Liu C, Wu G, VanLoon L, Bakker P. 2005. Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China. Biol Control. 32(1):111–120. DOI: https://doi.org/10.1016/j.biocontrol.2004.08.007.
Rashad YM, Abbas MA, Soliman HM, Abdel-Fattah GG, Abdel-Fattah GM. 2020. Synergy between endophytic Bacillus amyloliquefaciens GGA and arbuscular mycorrhizal fungi induces plant defense responses against white rot of garlic and improves host plant growth. Phytopathol Mediterr. 59(1):169–186. DOI: https://doi.org/10.36253/phyto-11019.
Santiago TR, Grabowski C, Rossato M, Romeiro RS, Mizubuti ESG. 2015. Biological control of eucalyptus bacterial wilt with rhizobacteria. Biol Control. 80:14–22. DOI: https://doi.org/10.1016/j.biocontrol.2014.09.007.
Shen Y, Li J, Xiang J, Wang J, Yin K, Liu Q. 2019. Isolation and identification of a novel protein elicitor from a Bacillus subtilis strain BU412. AMB Express. 9(1):1–9 DOI: https://doi.org/10.1186/s13568-019-0822-5.
Siddiqui ZA, Pichtel J. 2008. Mycorrhizae: an overview. Di dalam: Siddiqui ZA, Akhtar MS, Futai K, editor. Mycorrhizae: Sustainable Agriculture and Forestry. Dordrecht (DE): Springer. hlm. 1:1–35. DOI: https://doi.org/10.1007/978-1-4020-8770-7.
Siregar BA, Indrayadi H, Mardai 2012. Ancaman Penyakit layu bakteri terhadap produktivitas Eucalyptus pellita di dataran rendah tropis. Laporan Tahunan R&D.Perawang (ID): R&D PT. Arara Abadi. hlm. 1– 15.
Soliman MA. 2020. Paenibacillus polymyxa and Bacillus aryabhattai as Biocontrol Agents against Ralstonia solanacearum In Vitro and In Planta. JPPP. 11(3):197–203. DOI: https://doi.org/10.21608/jppp.2020.87024.
Song F, Song G, Dong A, Kong X. 2011. Regulatory mechanisms of host plant defense responses to arbuscular mycorrhiza. Acta Ecol Sin. 31(6):322–327. DOI: https://doi.org/10.1016/j.chnaes.2011.09.001.
Tahat MM, Sijam K, Othman R. 2012. The potential of endomycorrhizal fungi in controlling tomato bacterial wilt Ralstonia solanacearum under glasshouse condition. Afr J Biotechnol. 11(67):13085–13094. DOI: https://doi.org/10.5897/ajb11.3629.
Upreti R, Thomas P. 2015. Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects. Front Microbiol. 6(255):1–12. DOI: https://doi.org/10.3389/fmicb.2015.00255.
Van der Plank JE. 1963. Plant Diseases: Epidemics and Control. New York (NY): Academic Press.
Wang N, Liu M, Guo L, Yang X, Qiu D. 2016. A novel protein elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 induces systemic resistance in Tobacco. Int J Biol Sci. 12(6):757–767. DOI: https://doi.org/10.7150/ijbs.14333.
Whipps JM, Lumsden RD. 2001. Commercial use of fungi as plant diseases biological control agents: status and prospects. Di dalam: Butt, TM, Magan N, editor. Fungi as Biocontrol Agents: Progress, Problems and Potential. Wallingford (GB): CABI Publishing. hlm. 9-22.
Copyright (c) 2022 Jurnal Fitopatologi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in Jurnal Fitopatologi Indonesia agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.