Penularan Papaya ringspot virus melalui Serangga Vektor dan Biji
Abstract
Insect Vector and Seedborne Transmission of Papaya ringspot virus
Ringspot disease of papaya caused by Papaya ringspot virus (PRSV) is widely spread in Indonesia. Dissemination of this disease is known to occur through infected seedlings and aphid vectors. This study was conducted to determine transmission efficiency of PRSV through two aphid species, i.e. Aphis gossypii and Myzus persicae and to confirm that PRSV cannot be transmitted through seeds. Aphid transmission of PRSV isolate from Medan was carried out in papaya var. California with an acquisition feeding period and an inoculation feeding period of 10 minutes each. A minimum of 5 A. gossypii and 10 M. persicae were required for successful PRSV transmission. Transmission of PRSV by A. gossypii resulted higher disease incidence and more severe disease symptoms than transmission by M. persicae. Disease symptoms was not observed in all papaya seedlings grown from seeds extracted from fruits showing ringspot symptoms. Detection of PRSV by reverse transcription polymerase chain reaction method showed no amplification of specific DNA fragment of PRSV. The results of this study confirmed the potential of aphids as PRSV vectors and proved that PRSV was not seed borne.
Downloads
References
Bayot RG, Villegas VN, Magdalita, Jovellana MD, Espino TM, Exconde SB. 1990. Seed transmissibility of Papaya ringspot virus. Philippines Journal Crop Science. 15:107–111.
Blackman RL, Eastop VF. 1984. Aphids on the World’s crops: An Identification and Information Guide. Chichester (UK): Wiley.
Dietzgen RG, Mann KS, Johnson KN. 2016. Plant virus–insect vector interactions: Current and potential future research directions. Viruses. 8(11):303. DOI: https://doi.org/10.3390/v8110303.
Farida N, Damayanti TA, Efendi D, Hidayat SH. 2022. Insidensi dan identifikasi molekuler Papaya ringspot virus pada Pepaya di Jawa. Jurnal Fitopatologi Indonesia. 18(1):43–51. DOI: https://doi.org/10.14692/jfi.18.1.43-51.
Gonsalves D. 1998. Control of Papaya ringspot virus in papaya: A case study. Annual Review of Phtyopathology. 1998. 36(1):415–437. DOI: https://doi.org/10.1146/annurev.phyto.36.1.415.
Gonsalves D, Tripathi S, Carr JB, Suzuki JY. 2010. Papaya ringspot virus. The Plant Health Instructor. 149(12):2435–2442.
Harmiyati T, Hidayat SH, Adnan AM. 2016. Deteksi dan respons lima varietas pepaya terhadap tiga isolat Papaya vingspot virus (PRSV). Jurnal AgroBiogen. 11(3):87–94. DOI: https://doi.org/10.21082/jbio.v11n3.2015.p87-94.
Hidayat SH, Nurlita S, Wiyono S. 2012. Temuan penyakit baru - Infeksi Papaya ringspot virus pada tanaman papaya di Provinsi Nanggroe Aceh Darussalam. Jurnal Fitopatologi Indonesia. 8(6):14–187. DOI: https://doi.org/10.14692/jfi.8.6.184.
Kalleshwaraswamy CM, Khrisnakumar NK. 2008. Transmission efficiency of Papaya ringspot virus by three aphid species. Journal of Virology. 98(5):541–546. DOI: https://doi.org/10.1094/PHYTO-98-5-0541.
Laney AG, Avanzato MV, Tzanetakis IE. 2012. High incidence of seed transmission of Papaya ringspot virus and Watermelon mosaic virus, two viruses newly identified in Robinia pseudoacacia. European Journal of Plant Pathology. 134(2):227–230. DOI: https://doi.org/10.1007/s10658-012-9985-5.
Listihani L, Damayanti TA, Hidayat SH, Wiyono S. 2018. Karakterisasi molekuler Papaya ringspot virus tipe P pada tanaman mentimun di Jawa. Jurnal Fitopatologi Indonesia, 14(3):75–82. DOI: https://doi.org/10.14692/jfi.14.3.75.
Maina S, Coutts BA, Edwards OR, de Almeida L, Ximenes A, Jones RAC. 2017. Papaya ringspot virus populations from East Timorese and Northern Australian cucurbit crops: Biological and molecular properties, and absence of genetic connectivity. Plant Disease. 101:985–993. DOI: https://doi.org/10.1094/PDIS-10-16-1499-RE.
Martins DS, Ventura JA, Paula RCAL, Fornazier MJ, Rezende JAM, Culik MP, Ferreira PSF, Peronti ALBG, Carvalho RCZ, Sousa-Silva CR. 2016. Aphid vectors of Papaya ringspot virus and their weed hosts in orchards in the major papaya producing and exporting region of Brazil. Crop Protection. 90:191–196. DOI: https://doi.org/10.1016/j.cropro.2016.08.030.
Medina-Salguero AX, Cornejo-Franco JF, Grinstead S, Mowery J, Mollov D, Quito-Avila DF. 2021. Genetic characterization of a mild isolate of Papaya ringspot virus type-P (PRSV-P) and assessment of its cross-protection potential under greenhouse and field conditions. PLoS ONE. 16(2):e0241652. DOI: https://doi.org/10.1371/journal.pone.0241652.
Nurhantoro I, Mutaqin KH, Hidayat SH, 2018. Penggunaan pelacak DNA untuk deteksi Papaya ringspot virus dengan metode hibridisasi asam nukleat. Jurnal Fitopatologi Indonesia. 14(3):89–96. DOI: https://doi.org/10.14692/jfi.14.3.89.
Purcifull D, Edwaedson J, Hiebert E, Gonsalves D. 1984. Papaya ringspot virus. CMI/AAB Description of Plant Viruses. No. 292 (No. 84 Revisi, Juli 1984).8 hlm.
Thirugnanavel A, Balamohan TN, Karunakaran G, Manoranjitham SK. 2015. Effect of Papaya ringspot virus on growth, yield and quality of papaya (Carica papaya) cultivars. Indian Journal of Agricultural Sciences. 85(8):1069–1073.
Tripathi S, Suzuki Jy, Ferreira SA, Gonsalves D. 2008. Papaya ringspot virus: characteristics, pathogenicity, sequence variability and control. Molecular Plant Pathology. 9:269–280. DOI: https://doi.org/10.1111/j.1364-3703.2008.00467.x.
Copyright (c) 2022 Jurnal Fitopatologi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in Jurnal Fitopatologi Indonesia agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.