Penularan Papaya ringspot virus melalui Serangga Vektor dan Biji

  • Sri Hendrastuti Hidayat Departemen Proteksi Tanaman, Fakultas Pertanian, IPB https://orcid.org/0000-0003-4750-142X
  • Tutik Harmiyati Department of Plant Protection, IPB University
  • Abdul Muin Adnan Department of Plant Protection, IPB University
Keywords: Aphid, Aphis gossypii, disease incidence, Myzus persicae, ringspot symptom

Abstract

Insect Vector and Seedborne Transmission of Papaya ringspot virus

Ringspot disease of papaya caused by Papaya ringspot virus (PRSV) is widely spread in Indonesia. Dissemination of this disease is known to occur through infected seedlings and aphid vectors. This study was conducted to determine transmission efficiency of PRSV through two aphid species, i.e.  Aphis gossypii and Myzus persicae and to confirm that PRSV cannot be transmitted through seeds. Aphid transmission of PRSV isolate from Medan was carried out in papaya var. California with an acquisition feeding period and an inoculation feeding period of 10 minutes each. A minimum of 5 A. gossypii and 10 M. persicae were required for successful PRSV transmission. Transmission of PRSV by A. gossypii resulted higher disease incidence and more severe disease symptoms than transmission by M. persicae. Disease symptoms was not observed in all papaya seedlings grown from seeds extracted from fruits showing ringspot symptoms. Detection of PRSV by reverse transcription polymerase chain reaction method showed no amplification of specific DNA fragment of PRSV. The results of this study confirmed the potential of aphids as PRSV vectors and proved that PRSV was not seed borne.

Downloads

Download data is not yet available.

References

Bayot RG, Villegas VN, Magdalita, Jovellana MD, Espino TM, Exconde SB. 1990. Seed transmissibility of Papaya ringspot virus. Philippines Journal Crop Science. 15:107–111.

Blackman RL, Eastop VF. 1984. Aphids on the World’s crops: An Identification and Information Guide. Chichester (UK): Wiley.

Dietzgen RG, Mann KS, Johnson KN. 2016. Plant virus–insect vector interactions: Current and potential future research directions. Viruses. 8(11):303. DOI: https://doi.org/10.3390/v8110303.

Farida N, Damayanti TA, Efendi D, Hidayat SH. 2022. Insidensi dan identifikasi molekuler Papaya ringspot virus pada Pepaya di Jawa. Jurnal Fitopatologi Indonesia. 18(1):43–51. DOI: https://doi.org/10.14692/jfi.18.1.43-51.

Gonsalves D. 1998. Control of Papaya ringspot virus in papaya: A case study. Annual Review of Phtyopathology. 1998. 36(1):415–437. DOI: https://doi.org/10.1146/annurev.phyto.36.1.415.

Gonsalves D, Tripathi S, Carr JB, Suzuki JY. 2010. Papaya ringspot virus. The Plant Health Instructor. 149(12):2435–2442.

Harmiyati T, Hidayat SH, Adnan AM. 2016. Deteksi dan respons lima varietas pepaya terhadap tiga isolat Papaya vingspot virus (PRSV). Jurnal AgroBiogen. 11(3):87–94. DOI: https://doi.org/10.21082/jbio.v11n3.2015.p87-94.

Hidayat SH, Nurlita S, Wiyono S. 2012. Temuan penyakit baru - Infeksi Papaya ringspot virus pada tanaman papaya di Provinsi Nanggroe Aceh Darussalam. Jurnal Fitopatologi Indonesia. 8(6):14–187. DOI: https://doi.org/10.14692/jfi.8.6.184.

Kalleshwaraswamy CM, Khrisnakumar NK. 2008. Transmission efficiency of Papaya ringspot virus by three aphid species. Journal of Virology. 98(5):541–546. DOI: https://doi.org/10.1094/PHYTO-98-5-0541.

Laney AG, Avanzato MV, Tzanetakis IE. 2012. High incidence of seed transmission of Papaya ringspot virus and Watermelon mosaic virus, two viruses newly identified in Robinia pseudoacacia. European Journal of Plant Pathology. 134(2):227–230. DOI: https://doi.org/10.1007/s10658-012-9985-5.

Listihani L, Damayanti TA, Hidayat SH, Wiyono S. 2018. Karakterisasi molekuler Papaya ringspot virus tipe P pada tanaman mentimun di Jawa. Jurnal Fitopatologi Indonesia, 14(3):75–82. DOI: https://doi.org/10.14692/jfi.14.3.75.

Maina S, Coutts BA, Edwards OR, de Almeida L, Ximenes A, Jones RAC. 2017. Papaya ringspot virus populations from East Timorese and Northern Australian cucurbit crops: Biological and molecular properties, and absence of genetic connectivity. Plant Disease. 101:985–993. DOI: https://doi.org/10.1094/PDIS-10-16-1499-RE.

Martins DS, Ventura JA, Paula RCAL, Fornazier MJ, Rezende JAM, Culik MP, Ferreira PSF, Peronti ALBG, Carvalho RCZ, Sousa-Silva CR. 2016. Aphid vectors of Papaya ringspot virus and their weed hosts in orchards in the major papaya producing and exporting region of Brazil. Crop Protection. 90:191–196. DOI: https://doi.org/10.1016/j.cropro.2016.08.030.

Medina-Salguero AX, Cornejo-Franco JF, Grinstead S, Mowery J, Mollov D, Quito-Avila DF. 2021. Genetic characterization of a mild isolate of Papaya ringspot virus type-P (PRSV-P) and assessment of its cross-protection potential under greenhouse and field conditions. PLoS ONE. 16(2):e0241652. DOI: https://doi.org/10.1371/journal.pone.0241652.

Nurhantoro I, Mutaqin KH, Hidayat SH, 2018. Penggunaan pelacak DNA untuk deteksi Papaya ringspot virus dengan metode hibridisasi asam nukleat. Jurnal Fitopatologi Indonesia. 14(3):89–96. DOI: https://doi.org/10.14692/jfi.14.3.89.

Purcifull D, Edwaedson J, Hiebert E, Gonsalves D. 1984. Papaya ringspot virus. CMI/AAB Description of Plant Viruses. No. 292 (No. 84 Revisi, Juli 1984).8 hlm.

Thirugnanavel A, Balamohan TN, Karunakaran G, Manoranjitham SK. 2015. Effect of Papaya ringspot virus on growth, yield and quality of papaya (Carica papaya) cultivars. Indian Journal of Agricultural Sciences. 85(8):1069–1073.

Tripathi S, Suzuki Jy, Ferreira SA, Gonsalves D. 2008. Papaya ringspot virus: characteristics, pathogenicity, sequence variability and control. Molecular Plant Pathology. 9:269–280. DOI: https://doi.org/10.1111/j.1364-3703.2008.00467.x.

Published
2022-09-23
How to Cite
HidayatS. H., HarmiyatiT., & AdnanA. M. (2022). Penularan Papaya ringspot virus melalui Serangga Vektor dan Biji. Jurnal Fitopatologi Indonesia, 18(3), 101-106. https://doi.org/10.14692/jfi.18.3.101-106
Section
Articles