Penapisan Ketahanan Galur Tomat terhadap Tomato chlorosis crinivirus
Abstract
Screening for Resistance of Tomato Lines Against Tomato chlorosis crinivirus
Infection of Tomato chlorosis crinivirus (ToCV) has been reported involved in yellow disease of tomato. Recently, incidence of Crinivirus is increasing in tomato growing areas in West Java. Growing resistant tomato varieties will be effective for viral disease management, although finding resistance sources is quite a challenge. The aim of the study was to determine the resistance level of 12 tomato lines to ToCV infection. Fourteen days after transplanting, tomato lines were inoculated with ToCV using 10 viruliferous whiteflies (Trialeurodes vaporariorum). Observations were made on disease variables (incubation period, incidence and severity of disease, virus titer) and agronomic variables (plant height, number of leaves, number and weight of fruits). The average incubation period ranged from 9.4–13.5 days, and disease incidence ranged from 90.9–100%. Visual symptoms varied from mild to moderate chlorosis and leaf curling with disease severity scores ranging from 1.0–3.0. Virus titers were measured based on ELISA’s absorbance values, which ranged from 0.358 to 1.122. In general, ToCV infection inhibited plant growth and decreased leaf number, inhibited fruit weight and number i.e. 6.0–37.8%, 8.6–39.5%, 2.7–33.7%, and 7.0–25.5%, respectively. Based on disease assessement paramaters, responses of tomato lines were categorized as susceptible (BISILB#1029A, BISILB#22, and BISILB#724B), moderate resistant (BISILB#825B, BISILB#60D, BISIKC#402, BISIKC#96D, and BISILB#40I), and resistant (BISILB#1372ORA, BISILB#703A, BISILB#703B, and BISILB#724A). However, the resistance trait showed no correlation with tomato yield. Therefore, it is necessary to improve the trait of four resistant genotype so that is more adaptive to cultivation environmental factors and can be utilized as the parent of elite ToCV-resistant tomato variety.
Downloads
References
Amer MA, Ibrahim YE, Kheder AA, Hamed AH, Farrag AA, Al-Saleh MA. 2020. Confirmation Incidence of Tomato chlorosis
virus Naturally Infecting Tomato Crop in Egypt. Intl J Agric Biol. 23(5):963–969.
Balemi T. 2008. Response of tomato cultivars differing in growth habit to nitrogen and phosphorus fertilizers and spacing on vertisol in Ethiopia. Acta Agric Slovenica. 91(1):103–119. DOI: https://doi.org/10.
/v10014-008-0011-8.
Chen W, Hasegawa, Kaur DK, Kliot N, Pinheiro A, Luan PV, Fei JZ. 2016. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. 14(1):1–15. DOI: https://doi.org/10.1186/s12915-016-0321-y.
Fajarfika R, Hartono S, Sulandari S, Somowiyarjo S. 2015. Deteksi molekuler penyebab penyakit kuning (Tomato chlorosis virus dan Tomato infectious chlorosis virus) pada tanaman tomat. JPTI. 19(2):80–88. DOI: https://doi.org/10.22146/
jpti.17250.
Fiallo-Olive E, Navas-Castillo J. 2019. Tomato chlorosis virus, an emergent plant virus still expanding its geographical and host ranges. Mol Plant Pathol. 20(9):1307–1320.
DOI: https://doi.org/10.1111/mpp.12847.
Firdaus S, van Heusden AD, Hidayati N, Supena EDJ, Richard G, Visser F, Vosman B. 2012. Resistance to Bemisia tabaci in tomato wild relatives. Euphytica. 187:31–45. DOI: https://doi.org/10.1007/s10681-012-0704-2.
Fortes IM, Fernandez-Munoz R, Moriones E. 2020. Host plant resistance to Bemisia tabaci to control damage caused in tomato plants by the emerging Crinivirus Tomato chlorosis virus. Front Plant Sci. 11:1–9. DOI: https://doi.org/10.3389/fpls.2020.
García-Cano E, Navas-Castillo J, Moriones E,
Fernández-Muñoz R. 2010. Resistance to Tomato chlorosis virus in wild tomato species that impair virus accumulation and disease symptom expression. Phytopathology. 100(6):582–592. DOI: https://doi.org/10.1094/PHYTO-100-6-
Harel D, Fadida H, Slepoy A, Gantz S, Shilo K. 2014. The effect of mean daily temperature and relative humidity on pollen, fruit set and yield of tomato in commercial protected cultivation. Agronomy. 4(1):167–177. DOI: https://doi.org/10.3390/agronomy
Hull R. 2014. Plant Virology. Ed-5. Massachusetts (US): Elsevier Inc.
Mansila-Cordova PJ, Bampi D, Rondinel-Mendoza NV, Melo PCT, Lourencoa AL, Rezendea JAM. 2018. Screening tomato genotypes for resistance and tolerance to Tomato chlorosis virus. Plant Pathol. 67(5):1–7. DOI: https://doi.org/10.1111/ppa.12826.
Maluta NKP, Garzo E, Moreno A, Navas-Castillo J, Fiallo-Olive E, Spotti Lopez J. 2017. Stylet penetration activities of the whitefly Bemisia tabaci associated with inoculation of the crinivirus Tomato chlorosis virus. J Gen Virol. 98(6):1515–1520. DOI: https://doi.org/10.1099/jgv.0.000783.
Martin JH. 1987. An Identification Guide to Common Whitefly Pest Species of the World (Homoptera, Aleyrodidae). Trop Pest Manag. 33(4):298–322. DOI: http://dx.doi.org/10.1080/09670878709371174.
Mundt CC. 2014. Durable resistance: a key to sustainable management of pathogens and pests. Infect Genet Evol. 27:446–455. DOI: https://doi.org/10.1016/j.meegid.2014.01.
Neiva IP, da Silva AA, Resende JF, de Castro Carvalho R, de Oliveira AMS, Maluf WR. 2018. Tomato genotype resistance to whitefly mediated by allelochemicals and Mi gene. Chil J Agric Res. 79(1):124–130. DOI: http://dx.doi.org/10.4067/S0718-58392019000100124.
Nurulita S, Suastika G. 2013. Identifikasi Tomato infectious chlorosis virus dan Tomato chlorosis virus melalui Reverse Transcription Polymerase Chain Reaction dan Analisis Sikuen Nukleotida. J fitopatol Indones. 9(4):107–115. DOI: https://doi.org/10.14692/jfi.9.4.107.
Ntui VO, Kong K, Azadi P, Khan RS, Chin DP, Igawa T, Mii M, Nakamura I. 2014. RNAi-mediated resistance to Cucumber mosaic virus (CMV) in genetically engineered tomato. Am J Plant Sci. 5(5):554–572. DOI: https://doi.org/10.4236/ajps.2014.
Orfanidou CG, Pappi PG, Efthimiou KE, Katis NI, Maliogka VI. 2016. Transmission of Tomato chlorosis virus (ToCV) by Bemisia tabaci biotype Q and evaluation of four weed species as viral sources. Plant Dis. 100(10):2043–2049. DOI: https://doi.org/
1094/PDIS-01-16-0054-RE.
Rodriguez-Lopez MJ, Garzo E, Bonani JP, Fereres A, Fernandez-Munoz R, Moriones E.
Whitefly resistance traits derived
from the wild tomato Solanum pimpinellifolium aect the preference and feeding behavior of Bemisia tabaci and reduce the spread of Tomato yellow leaf curl virus. Phytopathology. 101(10):1191–1201.
DOI: https://doi.org/10.1094/PHYTO-01-
-0028.
Rojas MR, Gilbertson RL, Russel DR, Maxwell DP. 1993. Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Dis. 77(4):340–347. DOI: https://doi.org/10.1094/PD-77-0340.
Shamshiri SF, Jones JW, Thorp KR, Ahmad D, Che Man H, Taheri S. 2018. Review of optimum temperature, humidity, and vapour pressure deficit microclimate evaluation and control in greenhouse cultivation of tomato: A review. Int Agrophys. 32:287–302. DOI: https://doi.org/10.1515/intag-2017-0005.
Tzanetakis IE, Martin RR, Wintermantel WM. 2013. Epidemiology of criniviruses: An emerging problem in world agriculture. Front Microbiol. 4(119):1–15. DOI: https://doi.org/10.3389/fmicb.2013.00119.
Copyright (c) 2022 Jurnal Fitopatologi Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in Jurnal Fitopatologi Indonesia agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.