Penapisan Ketahanan Galur Tomat terhadap Tomato chlorosis crinivirus

  • Denih Wahyudin IPB University
  • Tri Asmira Damayanti Departemen Proteksi Tanaman, Fakultas Pertanian, IPB
  • Kikin Hamzah Mutaqin Department of Plant Protection, IPB University
Keywords: Crinivirus, disease incidence, disease severity, resistance response, Trialeurodes vaporariorum

Abstract

Screening for Resistance of Tomato Lines Against Tomato chlorosis crinivirus

Infection of Tomato chlorosis crinivirus (ToCV) has been reported involved in yellow disease of tomato. Recently, incidence of Crinivirus is increasing in tomato growing areas in West Java. Growing resistant tomato varieties will be effective for viral disease management, although finding resistance sources is quite a challenge. The aim of the study was to determine the resistance level of 12 tomato lines to ToCV infection. Fourteen days after transplanting, tomato lines were inoculated with ToCV using 10 viruliferous whiteflies (Trialeurodes vaporariorum). Observations were made on disease variables (incubation period, incidence and severity of disease, virus titer) and agronomic variables (plant height, number of leaves, number and weight of fruits). The average incubation period ranged from 9.4–13.5 days, and disease incidence ranged from 90.9–100%. Visual symptoms varied from mild to moderate chlorosis and leaf curling with disease severity scores ranging from 1.0–3.0. Virus titers were measured based on ELISA’s absorbance values, which ranged from 0.358 to 1.122. In general, ToCV infection inhibited plant growth and decreased leaf number, inhibited fruit weight and number i.e.  6.0–37.8%, 8.6–39.5%, 2.7–33.7%, and 7.0–25.5%, respectively. Based on disease assessement paramaters, responses of tomato lines were categorized as susceptible (BISILB#1029A, BISILB#22, and BISILB#724B), moderate resistant (BISILB#825B, BISILB#60D, BISIKC#402, BISIKC#96D, and BISILB#40I), and resistant (BISILB#1372ORA, BISILB#703A, BISILB#703B, and BISILB#724A). However, the resistance trait showed no correlation with tomato yield. Therefore, it is necessary to improve the trait of four resistant genotype so that is more adaptive to cultivation environmental factors and can be utilized as the parent of elite ToCV-resistant tomato variety.

Downloads

Download data is not yet available.

References

Amer MA, Ibrahim YE, Kheder AA, Hamed AH, Farrag AA, Al-Saleh MA. 2020. Confirmation Incidence of Tomato chlorosis

virus Naturally Infecting Tomato Crop in Egypt. Intl J Agric Biol. 23(5):963–969.

Balemi T. 2008. Response of tomato cultivars differing in growth habit to nitrogen and phosphorus fertilizers and spacing on vertisol in Ethiopia. Acta Agric Slovenica. 91(1):103–119. DOI: https://doi.org/10.

/v10014-008-0011-8.

Chen W, Hasegawa, Kaur DK, Kliot N, Pinheiro A, Luan PV, Fei JZ. 2016. The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. 14(1):1–15. DOI: https://doi.org/10.1186/s12915-016-0321-y.

Fajarfika R, Hartono S, Sulandari S, Somowiyarjo S. 2015. Deteksi molekuler penyebab penyakit kuning (Tomato chlorosis virus dan Tomato infectious chlorosis virus) pada tanaman tomat. JPTI. 19(2):80–88. DOI: https://doi.org/10.22146/

jpti.17250.

Fiallo-Olive E, Navas-Castillo J. 2019. Tomato chlorosis virus, an emergent plant virus still expanding its geographical and host ranges. Mol Plant Pathol. 20(9):1307–1320.

DOI: https://doi.org/10.1111/mpp.12847.

Firdaus S, van Heusden AD, Hidayati N, Supena EDJ, Richard G, Visser F, Vosman B. 2012. Resistance to Bemisia tabaci in tomato wild relatives. Euphytica. 187:31–45. DOI: https://doi.org/10.1007/s10681-012-0704-2.

Fortes IM, Fernandez-Munoz R, Moriones E. 2020. Host plant resistance to Bemisia tabaci to control damage caused in tomato plants by the emerging Crinivirus Tomato chlorosis virus. Front Plant Sci. 11:1–9. DOI: https://doi.org/10.3389/fpls.2020.

García-Cano E, Navas-Castillo J, Moriones E,

Fernández-Muñoz R. 2010. Resistance to Tomato chlorosis virus in wild tomato species that impair virus accumulation and disease symptom expression. Phytopathology. 100(6):582–592. DOI: https://doi.org/10.1094/PHYTO-100-6-

Harel D, Fadida H, Slepoy A, Gantz S, Shilo K. 2014. The effect of mean daily temperature and relative humidity on pollen, fruit set and yield of tomato in commercial protected cultivation. Agronomy. 4(1):167–177. DOI: https://doi.org/10.3390/agronomy

Hull R. 2014. Plant Virology. Ed-5. Massachusetts (US): Elsevier Inc.

Mansila-Cordova PJ, Bampi D, Rondinel-Mendoza NV, Melo PCT, Lourencoa AL, Rezendea JAM. 2018. Screening tomato genotypes for resistance and tolerance to Tomato chlorosis virus. Plant Pathol. 67(5):1–7. DOI: https://doi.org/10.1111/ppa.12826.

Maluta NKP, Garzo E, Moreno A, Navas-Castillo J, Fiallo-Olive E, Spotti Lopez J. 2017. Stylet penetration activities of the whitefly Bemisia tabaci associated with inoculation of the crinivirus Tomato chlorosis virus. J Gen Virol. 98(6):1515–1520. DOI: https://doi.org/10.1099/jgv.0.000783.

Martin JH. 1987. An Identification Guide to Common Whitefly Pest Species of the World (Homoptera, Aleyrodidae). Trop Pest Manag. 33(4):298–322. DOI: http://dx.doi.org/10.1080/09670878709371174.

Mundt CC. 2014. Durable resistance: a key to sustainable management of pathogens and pests. Infect Genet Evol. 27:446–455. DOI: https://doi.org/10.1016/j.meegid.2014.01.

Neiva IP, da Silva AA, Resende JF, de Castro Carvalho R, de Oliveira AMS, Maluf WR. 2018. Tomato genotype resistance to whitefly mediated by allelochemicals and Mi gene. Chil J Agric Res. 79(1):124–130. DOI: http://dx.doi.org/10.4067/S0718-58392019000100124.

Nurulita S, Suastika G. 2013. Identifikasi Tomato infectious chlorosis virus dan Tomato chlorosis virus melalui Reverse Transcription Polymerase Chain Reaction dan Analisis Sikuen Nukleotida. J fitopatol Indones. 9(4):107–115. DOI: https://doi.org/10.14692/jfi.9.4.107.

Ntui VO, Kong K, Azadi P, Khan RS, Chin DP, Igawa T, Mii M, Nakamura I. 2014. RNAi-mediated resistance to Cucumber mosaic virus (CMV) in genetically engineered tomato. Am J Plant Sci. 5(5):554–572. DOI: https://doi.org/10.4236/ajps.2014.

Orfanidou CG, Pappi PG, Efthimiou KE, Katis NI, Maliogka VI. 2016. Transmission of Tomato chlorosis virus (ToCV) by Bemisia tabaci biotype Q and evaluation of four weed species as viral sources. Plant Dis. 100(10):2043–2049. DOI: https://doi.org/

1094/PDIS-01-16-0054-RE.

Rodriguez-Lopez MJ, Garzo E, Bonani JP, Fereres A, Fernandez-Munoz R, Moriones E.

Whitefly resistance traits derived

from the wild tomato Solanum pimpinellifolium aect the preference and feeding behavior of Bemisia tabaci and reduce the spread of Tomato yellow leaf curl virus. Phytopathology. 101(10):1191–1201.

DOI: https://doi.org/10.1094/PHYTO-01-

-0028.

Rojas MR, Gilbertson RL, Russel DR, Maxwell DP. 1993. Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Dis. 77(4):340–347. DOI: https://doi.org/10.1094/PD-77-0340.

Shamshiri SF, Jones JW, Thorp KR, Ahmad D, Che Man H, Taheri S. 2018. Review of optimum temperature, humidity, and vapour pressure deficit microclimate evaluation and control in greenhouse cultivation of tomato: A review. Int Agrophys. 32:287–302. DOI: https://doi.org/10.1515/intag-2017-0005.

Tzanetakis IE, Martin RR, Wintermantel WM. 2013. Epidemiology of criniviruses: An emerging problem in world agriculture. Front Microbiol. 4(119):1–15. DOI: https://doi.org/10.3389/fmicb.2013.00119.

Published
2022-05-23
How to Cite
WahyudinD., DamayantiT. A., & MutaqinK. H. (2022). Penapisan Ketahanan Galur Tomat terhadap Tomato chlorosis crinivirus. Jurnal Fitopatologi Indonesia, 18(1), 19-29. https://doi.org/10.14692/jfi.18.1.19-29