Partial purification and identification of antibacterial peptides from the endophytic fungus KT31 isolated from Kappaphycus alvarezii

Purifikasi parsial dan identifikasi peptida antibakteri dari kapang endofit KT31 yang diisolasi dari makroalga Kappaphycus alvarezi

Authors

DOI:

https://doi.org/10.17844/vyxqk974

Keywords:

antibacterial activity, bioactive peptide, endophytic fungi, protein purification

Abstract

Endophytic fungi produce a wide array of secondary metabolites with diverse biological activities, including antibacterial, antifungal, insecticidal, and immunosuppressive effects. The increasing prevalence of infections caused by pathogenic bacteria, such as Escherichia coli, Bacillus subtilis, Salmonella typhi, Pseudomonas aeruginosa, Listeria monocytogenes, Bacillus pumilus, and Staphylococcus aureus, highlights the urgent need for novel antibacterial agents. This study aimed to determine the optimal concentration of ammonium sulfate for the isolation of endophytic fungus KT31 from Kappaphycus alvarezii based on its antibacterial activity. Fungal proteins were extracted using ammonium sulfate precipitation at varying saturation levels and subsequently tested for antibacterial activity against a panel of seven pathogenic bacterial strains. Crude protein extracts demonstrating promising activity were further purified using gel filtration chromatography with Sephadex G-50, followed by molecular weight determination usingDS-PAGE and protein quantification using a Bicinchoninic Acid (BCA) assay. The highest antibacterial activity was observed in the protein fraction precipitated at 80% ammonium sulfate saturation, exhibiting inhibition zones of up to 14 mm against E. coli and B. pumilus. A notable inhibition zone of 12 mm was observed for the most active chromatographic fraction. SDS-PAGE analysis revealed that the active protein had an estimated molecular weight of 11.27 kDa. These findings suggest that endophytic fungi, particularly the isolate KT31, represent a promising source of novel antibacterial peptides, warranting further investigation for therapeutic applications.

References

Aboaba, O. O., Ezeh, A. R., & Anabuike, C. L. (2011). Antimicrobial activities of some Nige-rian spices on some pathogens. Agricultural and Biological Journal of North America, 2(8), 1187–1193. https://doi.org/10.5251/abjna.2011.2.8.1187.1193

Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery, 20(3), 200-216. https://doi.org/10.1038/s41573-020-00114-z

Ageitos, J. M., Sánchez Pérez, A., Calo Mata, P., & Villa, T. G. (2017). Antimicrobial pep-tides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochemical Pharmacology, 133, 117-138. https://doi.org/10.1016/j.bcp.2016.09.018

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicro-bial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

Bertrand, B., & Muñoz-Garay, C. (2019). Marine antimicrobial peptides: A promising source of new generation antibiotics and other bioactive molecules. International Journal of Peptide Research and Therapeutics, 25(1), 1441–1450. https://doi.org/10.1007/s10989-018-9733-1

Budiman, M. A., Tarman, K., Hardiningtyas, S. D., & Nurazizah, M. A. (2024). Ek-splorasi aktivitas enzimatik dari fungi endofit laut serta aplikasinya un-tuk hidrolisis kitosan. Jurnal Pengolahan Hasil Perikanan Indonesia, 27(11), 1035-1049. http://dx.doi.org/10.17844/jphpi.v27i11.58419

Chen, P., Ye, T., Li, C., Luo, H., Zhang, X., Zhang, W., & Zhang, C. (2024). Embracing the era of antimicrobial peptides with marine organisms. Natural Product Reports, 41(1), 123–145. https://doi.org/10.1039/d3np00031a

El-Beltagi, H. S., Mohamed, A. A., Mohamed, H. I., Ramadan, K. M. A., Barqawi, A. A., & Mansour, A. T. (2022). Phytochemical and potential properties of seaweeds and their recent applications: A review. Marine Drugs, 20(6), 342. https://doi.org/10.3390/md20060342

Gebriella Inthe, M., Tarman, K., & Safithri, M. (2014). Fraksinasi protein kapang laut Xylaria psidii KT30 dan sitotoksisitasnya terhadap sel HeLa. J. Teknol. Ind. Pangan, 25, 39–46. https://doi.org/10.6066/jtip.2014.25.1.39.

Hariati, S., Wahjuningrum, D., Yuhana, M., Tarman, K., Effendi, I., & Saputra, F. (2018). An-tibacterial activity of marine fungus Nodulisporium sp. KT29 against Vibrio harveyi. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(2), 250-257. https://doi.org/10.17844/jphpi.v21i2.22855

Huang, W. Y., Cai, Y. Z., Hyde, K. D., Corke, H., & Sun, M. (2007). Endophytic fungi from Nerium oleander L. (Apocynaceae): Main constituents and antioxidant activity. World Journal of Microbiology and Biotechnology, 23, 1253-1263.

Hou, X., Sun, R., Feng, Y., & Zhang, R. (2022). Peptaibols: Diversity, bioactivity, and bio-synthesis. Engineering Microbiology, 2(4), 100026. https://doi.org/10.1016/j.engmic.2022.100026

Ho Le Han, P. T. D. N., Kim, S. G., Chan, S. S., Tran, H. T., & Kim, J. (2023). Isolation and characterization of antimicrobial peptides from Brevibacillus halotolerans. Molecular Biotechnology, 65(1), 112–121. https://doi.org/10.1007/s12033-023-00963-0

Ilyas, M., Kanti, A., Jamal, Y., Hertina, & Agusta, A. (2009). Biodiversity of endophytic fun-gi associated with Uncaria gambier Roxb. (Rubiaceae) from West Sumatra. Biodiversi-tas, 10(1), 23–28. https://doi.org/10.13057/biodiv/d100105

Indarmawan, T., Mustopa, A. Z., Budiarto, B. R., & Tarman, K. (2016). Antibacterial activity of extracellular protease isolated from an algicolous fungus Xylaria psidii KT30 against Gram-positive bacteria. HAYATI Journal of Biosciences, 23(2), 73–77. https://doi.org/10.4308/hjb.23.2.73

Inthe, M. G., Tarman, K., & Safithri, M. (2014). Fractionation of proteins from Xylaria psidii KT30 and cytotoxicity against HeLa cells. Jurnal Teknologi dan Industri Pangan, 25(1), 39-44. https://doi.org/10.6066/jtip.2014.25.1.39

Isti'anah, I., Tarman, K., Suseno, S. H., Nugraha, R., & Effendi, I. (2024). Penapisan senyawa bioaktif antibakteri fungi laut endofit asal Pulau Buton Sulawesi Tenggara. Jurnal Pengolahan Hasil Perikanan Indonesia, 27(7), 553-563. http://dx.doi.org/10.17844/jphpi.v27i7.50489

Kusari, S., Hertweck, C., & Spiteller, M. (2012). Chemical ecology of endophytic fungi: Ori-gins of secondary metabolites. Chemistry & Biology, 21(9), 1103-1112. https://doi.org/10.1016/j.chembiol.2012.06.004

Li, X.-Z., Plésiat, P., & Nikaido, H. (2015). The challenge of efflux-mediated antibiotic re-sistance in Gram-negative bacteria. Clinical Microbiology Reviews, 28(2), 337–418. https://doi.org/10.1128/CMR.00117-14

Luyen, N. D., Huong, L. M., Ha, T. T. H., Cuong, L. H., Yen, D. T. H., Nhiem, N. X., Tai, B. H., Gardes, A., Kopprio, G., & Kiem, P. V. (2019). Aspermicrones A–C, novel diben-zospiroketals from the seaweed-derived endophytic fungus Aspergillus microne-siensis. The Journal of Antibiotics, 72(11), 843–847. https://doi.org/10.1038/s41429-019-0214-8

Mahlapuu, M., Håkansson, J., Ringstad, L., & Björn, C. (2016). Antimicrobial peptides: An emerging category of therapeutic agents. Frontiers in Cellular and Infection Microbiol-ogy, 6, 194. https://doi.org/10.3389/fcimb.2016.00194

Mookherjee, N., Anderson, M. A., Haagsman, H. P., & Davidson, D. J. (2020). Antimicrobial host defence peptides: Functions and clinical potential. Nature Reviews Drug Discov-ery, 19, 311-332. https://doi.org/10.1038/s41573-019-0058-8

Munandar, A., Mustopa, A. Z., Tarman, K., & Nurhayati, T. (2014). Antibacterial activity of protein from marine fungus Xylaria psidii KT30 against E. coli and B. subtilis. Jurnal Teknologi dan Industri Pangan, 25(2), 146-152. https://doi.org/10.6066/jtip.2014.25.2.146

Munandar, A., Mustopa, A. Z., Tarman, K., & Nurhayati, T. (2015). Aktivitas antikanker protein kapang Xylaria psidii KT30. Jurnal Perikanan dan Kelautan, 5(1), 65–70. http://dx.doi.org/10.33512/jpk.v5i1.280

Ng, T., Cheung, R., & Wong, J. H. (2013). Antimicrobial activity of defensins and defensin-like peptides with special emphasis on those from fungi and invertebrate animals. Cur-rent Protein & Peptide Science, 14(6), 515–528. https://doi.org/10.2174/13892037113149990068

Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Mi-crobiology and Molecular Biology Reviews, 67(4), 593–656. https://doi.org/10.1128/MMBR.67.4.593-656.2003

Niño-Vega, G. A., Ortiz-Ramírez, J. A., & López-Romero, E. (2025). Novel antibacterial ap-proaches and therapeutic strategies. Antibiotics, 14(4), 404. https://doi.org/10.3390/antibiotics14040404

Onsori, H., Zamani, M. R., Motallebi, M., & Zarghami, N. (2005). Identification of over-producer strain of endo-β-1,4-glucanase in Aspergillus species: Characterization of crude carboxymethyl cellulase. African Journal of Biotechnology, 4(1), 26–30.

Pan, C., Hassan, S. S. U., Muhammad, I., & Jin, H. (2024). Marine fungi as a goldmine for novel antibiotics: A 2024 perspective. Frontiers in Marine Science, 11. https://doi.org/10.3389/fmars.2024.1538136

Pierce. (2003). BCA protein assay kit—technical manual. Thermo Scientific. https://assets.thermofisher.com/TFSAssets/LSG/manuals/MAN0011430_Pierce_BCA_Protein_Asy_UG.pdf

Sarkar, G., & Suthindhiran, K. (2022). Diversity and biotechnological potential of marine ac-tinomycetes from India. Indian Journal of Microbiology, 62(4), 475–493. https://doi.org/10.1007/s12088-022-01024-x

Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., & Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76–85. https://doi.org/10.1016/0003-2697(85)90442-7

Souza, L. M., Barcellos, T., Silva, S. A., Ferreira, J. V., Goveia, D., Simas, F. F., & Cipriani, T. R. (2025). Proteins from Kappaphycus alvarezii: Identification and antimicrobial activ-ity against human pathogens. Processes, 13(5), 1569. https://doi.org/10.3390/pr13051569

Szekeres, A., Leitgeb, B., Kredics, L., Antal, Z., Hatvani, L., Manczinger, L., Vágvölgyi, C., & Nagy, A. (2005). Peptaibols and related peptaibiotics of Trichoderma. Acta Micro-biologica et Immunologica Hungarica, 52(2), 137–168. https://doi.org/10.1556/AMicr.52.2005.2.3

Tan, R. X., & Zou, W. X. (2001). Endophytes: A rich source of functional metabolites. Natu-ral Product Reports, 18(4), 448-459. https://doi.org/10.1039/B100918O

Tarman, K., Lindequist, U., Wende, K., Porzel, A., Arnold, N., & Wessjohann, L. A. (2011). Isolation of a new natural product and cytotoxic and antimicrobial activities of extracts from fungi of Indonesian marine habitats (KT31). Marine Drugs, 9(3), 294-306. https://doi.org/10.3390/md9030294

Todorov, S. D., Nyati, H., Meincken, M., & Dicks, L. M. T. (2007). Partial characterization of bacteriocin AMA-K isolated from naturally fermented milk from Zimbabwe. Food Control, 18(4), 456–464. https://doi.org/10.1016/j.foodcont.2006.03.003

Wachirathiancai, S., Bhumiratana, A., & Udomsopagit, S. (2004). Isolation, purification, and characterization of l-glutamate oxidase from Streptomyces sp. 18G. Electron Journal of Bioctechnology, 7, 274–281. https://doi.org/10.4067/S0717-34582004000300009

Wahjuningrum, D., Efianda, T. R., Tarman, K., Yuhana, M., Effendi, I., & Saputra, F. (2020). Nodulisporium sp. KT29 induced by Vibrio harveyi as an immunostimulant for control-ling vibriosis in Vannamei white shrimp under marine culture system. Jurnal Akuakul-tur Indonesia, 19(2), 95-105. https://doi.org/10.19027/jai.19.2.95-105

Wahjuningrum, D., Yuhana, M., Effendi, I., Saputra, F., & Tarman, K. (2022). Low dose of Nodulisporium sp. KT29 metabolite promotes production performance and innate im-munity of Pacific white leg shrimp (Litopenaeus vannamei) against co-infection of WSSV and Vibrio harveyi. Aquaculture International, 30, 2611-2628. https://doi.org/10.1007/s10499-022-00924-5

Wang, G. (Ed.). (2010). Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies (Vol. 18). CABI. https://doi.org/10.1079/9781845936570.0000

Wang, S., Fan, L., Pan, H., Li, Y., Qiu, Y., & Lu, Y. (2023). Antimicrobial peptides from ma-rine animals: sources, structures, mechanisms and the potential for drug development. Frontiers in Marine Science, 9, 1112592. https://doi.org/10.3389/fmars.2022.1112595

Wingfield, P. (2001). Protein precipitation using ammonium sulfate. Current Protocols in Pro-tein Science, Appendix 3F, A.3F.1–A.3F.8. https://doi.org/10.1002/0471140864.psa03fs13

Youssef, F. S., Ashour, M. L., Singab, A. N. B., & Wink, M. (2019). A comprehensive review of bioactive peptides from marine fungi and their biological significance. Marine Drugs, 17(10), 559. https://doi.org/10.3390/md17100559

Downloads

Published

2025-10-09

How to Cite

Sofyana, N. T., Mustopa, A. Z. ., Iriani Setyaningsih, Tarman, K. ., & Maulidiani, M. (2025). Partial purification and identification of antibacterial peptides from the endophytic fungus KT31 isolated from Kappaphycus alvarezii: Purifikasi parsial dan identifikasi peptida antibakteri dari kapang endofit KT31 yang diisolasi dari makroalga Kappaphycus alvarezi. Jurnal Pengolahan Hasil Perikanan Indonesia, 28(9), 828-840. https://doi.org/10.17844/vyxqk974