Partial purification and identification of antibacterial peptides from the endophytic fungus KT31 isolated from Kappaphycus alvarezii
Purifikasi parsial dan identifikasi peptida antibakteri dari kapang endofit KT31 yang diisolasi dari makroalga Kappaphycus alvarezi
DOI:
https://doi.org/10.17844/vyxqk974Keywords:
antibacterial activity, bioactive peptide, endophytic fungi, protein purificationAbstract
Endophytic fungi produce a wide array of secondary metabolites with diverse biological activities, including antibacterial, antifungal, insecticidal, and immunosuppressive effects. The increasing prevalence of infections caused by pathogenic bacteria, such as Escherichia coli, Bacillus subtilis, Salmonella typhi, Pseudomonas aeruginosa, Listeria monocytogenes, Bacillus pumilus, and Staphylococcus aureus, highlights the urgent need for novel antibacterial agents. This study aimed to determine the optimal concentration of ammonium sulfate for the isolation of endophytic fungus KT31 from Kappaphycus alvarezii based on its antibacterial activity. Fungal proteins were extracted using ammonium sulfate precipitation at varying saturation levels and subsequently tested for antibacterial activity against a panel of seven pathogenic bacterial strains. Crude protein extracts demonstrating promising activity were further purified using gel filtration chromatography with Sephadex G-50, followed by molecular weight determination usingDS-PAGE and protein quantification using a Bicinchoninic Acid (BCA) assay. The highest antibacterial activity was observed in the protein fraction precipitated at 80% ammonium sulfate saturation, exhibiting inhibition zones of up to 14 mm against E. coli and B. pumilus. A notable inhibition zone of 12 mm was observed for the most active chromatographic fraction. SDS-PAGE analysis revealed that the active protein had an estimated molecular weight of 11.27 kDa. These findings suggest that endophytic fungi, particularly the isolate KT31, represent a promising source of novel antibacterial peptides, warranting further investigation for therapeutic applications.
References
Aboaba, O. O., Ezeh, A. R., & Anabuike, C. L. (2011). Antimicrobial activities of some Nige-rian spices on some pathogens. Agricultural and Biological Journal of North America, 2(8), 1187–1193. https://doi.org/10.5251/abjna.2011.2.8.1187.1193
Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery, 20(3), 200-216. https://doi.org/10.1038/s41573-020-00114-z
Ageitos, J. M., Sánchez Pérez, A., Calo Mata, P., & Villa, T. G. (2017). Antimicrobial pep-tides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochemical Pharmacology, 133, 117-138. https://doi.org/10.1016/j.bcp.2016.09.018
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicro-bial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
Bertrand, B., & Muñoz-Garay, C. (2019). Marine antimicrobial peptides: A promising source of new generation antibiotics and other bioactive molecules. International Journal of Peptide Research and Therapeutics, 25(1), 1441–1450. https://doi.org/10.1007/s10989-018-9733-1
Budiman, M. A., Tarman, K., Hardiningtyas, S. D., & Nurazizah, M. A. (2024). Ek-splorasi aktivitas enzimatik dari fungi endofit laut serta aplikasinya un-tuk hidrolisis kitosan. Jurnal Pengolahan Hasil Perikanan Indonesia, 27(11), 1035-1049. http://dx.doi.org/10.17844/jphpi.v27i11.58419
Chen, P., Ye, T., Li, C., Luo, H., Zhang, X., Zhang, W., & Zhang, C. (2024). Embracing the era of antimicrobial peptides with marine organisms. Natural Product Reports, 41(1), 123–145. https://doi.org/10.1039/d3np00031a
El-Beltagi, H. S., Mohamed, A. A., Mohamed, H. I., Ramadan, K. M. A., Barqawi, A. A., & Mansour, A. T. (2022). Phytochemical and potential properties of seaweeds and their recent applications: A review. Marine Drugs, 20(6), 342. https://doi.org/10.3390/md20060342
Gebriella Inthe, M., Tarman, K., & Safithri, M. (2014). Fraksinasi protein kapang laut Xylaria psidii KT30 dan sitotoksisitasnya terhadap sel HeLa. J. Teknol. Ind. Pangan, 25, 39–46. https://doi.org/10.6066/jtip.2014.25.1.39.
Hariati, S., Wahjuningrum, D., Yuhana, M., Tarman, K., Effendi, I., & Saputra, F. (2018). An-tibacterial activity of marine fungus Nodulisporium sp. KT29 against Vibrio harveyi. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(2), 250-257. https://doi.org/10.17844/jphpi.v21i2.22855
Huang, W. Y., Cai, Y. Z., Hyde, K. D., Corke, H., & Sun, M. (2007). Endophytic fungi from Nerium oleander L. (Apocynaceae): Main constituents and antioxidant activity. World Journal of Microbiology and Biotechnology, 23, 1253-1263.
Hou, X., Sun, R., Feng, Y., & Zhang, R. (2022). Peptaibols: Diversity, bioactivity, and bio-synthesis. Engineering Microbiology, 2(4), 100026. https://doi.org/10.1016/j.engmic.2022.100026
Ho Le Han, P. T. D. N., Kim, S. G., Chan, S. S., Tran, H. T., & Kim, J. (2023). Isolation and characterization of antimicrobial peptides from Brevibacillus halotolerans. Molecular Biotechnology, 65(1), 112–121. https://doi.org/10.1007/s12033-023-00963-0
Ilyas, M., Kanti, A., Jamal, Y., Hertina, & Agusta, A. (2009). Biodiversity of endophytic fun-gi associated with Uncaria gambier Roxb. (Rubiaceae) from West Sumatra. Biodiversi-tas, 10(1), 23–28. https://doi.org/10.13057/biodiv/d100105
Indarmawan, T., Mustopa, A. Z., Budiarto, B. R., & Tarman, K. (2016). Antibacterial activity of extracellular protease isolated from an algicolous fungus Xylaria psidii KT30 against Gram-positive bacteria. HAYATI Journal of Biosciences, 23(2), 73–77. https://doi.org/10.4308/hjb.23.2.73
Inthe, M. G., Tarman, K., & Safithri, M. (2014). Fractionation of proteins from Xylaria psidii KT30 and cytotoxicity against HeLa cells. Jurnal Teknologi dan Industri Pangan, 25(1), 39-44. https://doi.org/10.6066/jtip.2014.25.1.39
Isti'anah, I., Tarman, K., Suseno, S. H., Nugraha, R., & Effendi, I. (2024). Penapisan senyawa bioaktif antibakteri fungi laut endofit asal Pulau Buton Sulawesi Tenggara. Jurnal Pengolahan Hasil Perikanan Indonesia, 27(7), 553-563. http://dx.doi.org/10.17844/jphpi.v27i7.50489
Kusari, S., Hertweck, C., & Spiteller, M. (2012). Chemical ecology of endophytic fungi: Ori-gins of secondary metabolites. Chemistry & Biology, 21(9), 1103-1112. https://doi.org/10.1016/j.chembiol.2012.06.004
Li, X.-Z., Plésiat, P., & Nikaido, H. (2015). The challenge of efflux-mediated antibiotic re-sistance in Gram-negative bacteria. Clinical Microbiology Reviews, 28(2), 337–418. https://doi.org/10.1128/CMR.00117-14
Luyen, N. D., Huong, L. M., Ha, T. T. H., Cuong, L. H., Yen, D. T. H., Nhiem, N. X., Tai, B. H., Gardes, A., Kopprio, G., & Kiem, P. V. (2019). Aspermicrones A–C, novel diben-zospiroketals from the seaweed-derived endophytic fungus Aspergillus microne-siensis. The Journal of Antibiotics, 72(11), 843–847. https://doi.org/10.1038/s41429-019-0214-8
Mahlapuu, M., Håkansson, J., Ringstad, L., & Björn, C. (2016). Antimicrobial peptides: An emerging category of therapeutic agents. Frontiers in Cellular and Infection Microbiol-ogy, 6, 194. https://doi.org/10.3389/fcimb.2016.00194
Mookherjee, N., Anderson, M. A., Haagsman, H. P., & Davidson, D. J. (2020). Antimicrobial host defence peptides: Functions and clinical potential. Nature Reviews Drug Discov-ery, 19, 311-332. https://doi.org/10.1038/s41573-019-0058-8
Munandar, A., Mustopa, A. Z., Tarman, K., & Nurhayati, T. (2014). Antibacterial activity of protein from marine fungus Xylaria psidii KT30 against E. coli and B. subtilis. Jurnal Teknologi dan Industri Pangan, 25(2), 146-152. https://doi.org/10.6066/jtip.2014.25.2.146
Munandar, A., Mustopa, A. Z., Tarman, K., & Nurhayati, T. (2015). Aktivitas antikanker protein kapang Xylaria psidii KT30. Jurnal Perikanan dan Kelautan, 5(1), 65–70. http://dx.doi.org/10.33512/jpk.v5i1.280
Ng, T., Cheung, R., & Wong, J. H. (2013). Antimicrobial activity of defensins and defensin-like peptides with special emphasis on those from fungi and invertebrate animals. Cur-rent Protein & Peptide Science, 14(6), 515–528. https://doi.org/10.2174/13892037113149990068
Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Mi-crobiology and Molecular Biology Reviews, 67(4), 593–656. https://doi.org/10.1128/MMBR.67.4.593-656.2003
Niño-Vega, G. A., Ortiz-Ramírez, J. A., & López-Romero, E. (2025). Novel antibacterial ap-proaches and therapeutic strategies. Antibiotics, 14(4), 404. https://doi.org/10.3390/antibiotics14040404
Onsori, H., Zamani, M. R., Motallebi, M., & Zarghami, N. (2005). Identification of over-producer strain of endo-β-1,4-glucanase in Aspergillus species: Characterization of crude carboxymethyl cellulase. African Journal of Biotechnology, 4(1), 26–30.
Pan, C., Hassan, S. S. U., Muhammad, I., & Jin, H. (2024). Marine fungi as a goldmine for novel antibiotics: A 2024 perspective. Frontiers in Marine Science, 11. https://doi.org/10.3389/fmars.2024.1538136
Pierce. (2003). BCA protein assay kit—technical manual. Thermo Scientific. https://assets.thermofisher.com/TFSAssets/LSG/manuals/MAN0011430_Pierce_BCA_Protein_Asy_UG.pdf
Sarkar, G., & Suthindhiran, K. (2022). Diversity and biotechnological potential of marine ac-tinomycetes from India. Indian Journal of Microbiology, 62(4), 475–493. https://doi.org/10.1007/s12088-022-01024-x
Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., & Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76–85. https://doi.org/10.1016/0003-2697(85)90442-7
Souza, L. M., Barcellos, T., Silva, S. A., Ferreira, J. V., Goveia, D., Simas, F. F., & Cipriani, T. R. (2025). Proteins from Kappaphycus alvarezii: Identification and antimicrobial activ-ity against human pathogens. Processes, 13(5), 1569. https://doi.org/10.3390/pr13051569
Szekeres, A., Leitgeb, B., Kredics, L., Antal, Z., Hatvani, L., Manczinger, L., Vágvölgyi, C., & Nagy, A. (2005). Peptaibols and related peptaibiotics of Trichoderma. Acta Micro-biologica et Immunologica Hungarica, 52(2), 137–168. https://doi.org/10.1556/AMicr.52.2005.2.3
Tan, R. X., & Zou, W. X. (2001). Endophytes: A rich source of functional metabolites. Natu-ral Product Reports, 18(4), 448-459. https://doi.org/10.1039/B100918O
Tarman, K., Lindequist, U., Wende, K., Porzel, A., Arnold, N., & Wessjohann, L. A. (2011). Isolation of a new natural product and cytotoxic and antimicrobial activities of extracts from fungi of Indonesian marine habitats (KT31). Marine Drugs, 9(3), 294-306. https://doi.org/10.3390/md9030294
Todorov, S. D., Nyati, H., Meincken, M., & Dicks, L. M. T. (2007). Partial characterization of bacteriocin AMA-K isolated from naturally fermented milk from Zimbabwe. Food Control, 18(4), 456–464. https://doi.org/10.1016/j.foodcont.2006.03.003
Wachirathiancai, S., Bhumiratana, A., & Udomsopagit, S. (2004). Isolation, purification, and characterization of l-glutamate oxidase from Streptomyces sp. 18G. Electron Journal of Bioctechnology, 7, 274–281. https://doi.org/10.4067/S0717-34582004000300009
Wahjuningrum, D., Efianda, T. R., Tarman, K., Yuhana, M., Effendi, I., & Saputra, F. (2020). Nodulisporium sp. KT29 induced by Vibrio harveyi as an immunostimulant for control-ling vibriosis in Vannamei white shrimp under marine culture system. Jurnal Akuakul-tur Indonesia, 19(2), 95-105. https://doi.org/10.19027/jai.19.2.95-105
Wahjuningrum, D., Yuhana, M., Effendi, I., Saputra, F., & Tarman, K. (2022). Low dose of Nodulisporium sp. KT29 metabolite promotes production performance and innate im-munity of Pacific white leg shrimp (Litopenaeus vannamei) against co-infection of WSSV and Vibrio harveyi. Aquaculture International, 30, 2611-2628. https://doi.org/10.1007/s10499-022-00924-5
Wang, G. (Ed.). (2010). Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies (Vol. 18). CABI. https://doi.org/10.1079/9781845936570.0000
Wang, S., Fan, L., Pan, H., Li, Y., Qiu, Y., & Lu, Y. (2023). Antimicrobial peptides from ma-rine animals: sources, structures, mechanisms and the potential for drug development. Frontiers in Marine Science, 9, 1112592. https://doi.org/10.3389/fmars.2022.1112595
Wingfield, P. (2001). Protein precipitation using ammonium sulfate. Current Protocols in Pro-tein Science, Appendix 3F, A.3F.1–A.3F.8. https://doi.org/10.1002/0471140864.psa03fs13
Youssef, F. S., Ashour, M. L., Singab, A. N. B., & Wink, M. (2019). A comprehensive review of bioactive peptides from marine fungi and their biological significance. Marine Drugs, 17(10), 559. https://doi.org/10.3390/md17100559
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Neng Tanty Sofyana, Apon Zaenal Mustopa, Iriani Setyaningsih, Kustiariyah Tarman, Maulidiani Maulidiani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.






