Perubahan profil protein dan tekstur rajungan (Portunus pelagicus) kukus selama penyimpanan dingin dan beku

Alterations in protein profile and texture of steamed blue swimming crab (Portunus pelagicus) during chilled and frozen storage

Authors

DOI:

https://doi.org/10.17844/y8fdxz35

Keywords:

blue swimming crab, meat quality, steaming, storage, texture

Abstract

The blue swimming crab (Portunus pelagicus) is a high-quality source of animal protein with a distinctive texture. Storage processes are known to alter protein profiles, leading to changes in the texture. However, no studies have examined the alterations in the protein profile of blue swimming crabs during storage after steaming. Therefore, this study aimed to determine the effects of steaming and subsequent storage under chilled and frozen conditions on the protein profile and texture of crab meat. Fresh and steamed crab meat samples were divided into three anatomical portions for analysis: claw meat (CM), jumbo lumps (JL), and leg meat (LEG). Steamed samples were stored under chilled (4°C) and frozen (− 18°C) conditions for varying storage durations. The three anatomical portions exhibited distinct protein profiles and textural characteristics of the meat. The CM portion contained the highest concentration of water-soluble proteins (3.837±0.16 mg/mL), followed by JL and LEG, respectively. Overall, steaming altered the protein profile and texture of all portions. The water-soluble protein content decreased significantly, particularly in CM, where the reduction reached nearly 50%. In contrast, the textural values increased, most notably in the LEG portion. Frozen storage better preserved protein characteristics than chilled storage. The water-soluble protein content remained relatively stable under frozen conditions but fluctuated in samples stored at chilled temperatures. SDS-PAGE analysis showed a reduction in the number of protein bands after steaming, especially for high-molecular-weight proteins (>50 kDa). Storage under either chilled or frozen conditions induced minimal changes in protein profiles. 

References

Arwani, A., Palupi, N. S., & Giriwono, P. E. (2022). Effects of different heat processing on molecular weight and allergenicity profile of white shrimp (Litopenaeus vannamei) and mud crab (Scylla serrata) from Indonesian Waters. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 17(1), 13–22. https://doi.org/10.15578/squalen.629

Benjakul, S., & Sutthipan, N. (2009). Comparative study on chemical composition, thermal properties and microstructure between the muscle of hard shell and soft shell mud crabs. Food Chemistry, 112(3), 627–633. https://doi.org/10.1016/J.FOODCHEM.2008.06.019

Chen, Q., Zhang, Y., Jing, L., Xiao, N., Wu, X., Shi, W., Chen, Q., Zhang, Y., Jing, L., Xiao, N., Wu, X., & Shi, W. (2022). Changes in protein degradation and non-volatile flavor substances of swimming crab (Portunus trituberculatus) during steaming. Foods, 11(21), 3502-3512. https://doi.org/10.3390/FOODS11213502

Davis, C. M., Gupta, R. S., Aktas, O. N., Diaz, V., Kamath, S. D., & Lopata, A. L. (2020). Clinical management of seafood allergy. The Journal of Allergy and Clinical Immunology: In Practice, 8(1), 37–44. https://doi.org/10.1016/j.jaip.2019.10.019

Dima, J. B., Barón, P. J., & Zaritzky, N. E. (2012). Mathematical modeling of the heat transfer process and protein denaturation during the thermal treatment of Patagonian marine crabs. Journal of Food Engineering, 113(4), 623–634. https://doi.org/10.1016/J.JFOODENG.2012.07.007

Dong, R., Wu, Y., Du, Q., Lu, R., Benjakul, S., Zhang, B., & Shui, S. (2024). Changes in the physicochemical characteristics and microbial community compositions of the abdomen and cheliped muscles in swimming crab (Portunus trituberculatus) during frozen storage. Food Chemistry: X, 21, 101210. https://doi.org/10.1016/J.FOCHX.2024.101210

FAO. (2020). The State of World Fisheries and Aquaculture 2020. https://doi.org/10.4060/ca9229en

Fatma, N., Metusalach, M., Taslim, N. A., & Nurimala, M. (2023). SDS-PAGE protein profile of albumin extracted by steaming from four marine and three brackish-water fishes. Biodiversitas Journal of Biological Diversity, 24(7), 4027-4033. https://doi.org/10.13057/biodiv/d240740

Hu, S., Xu, X., Zhang, W., Li, C., & Zhou, G. (2023). Quality control of jinhua ham from the influence between proteases activities and processing parameters: A review. Foods, 12(7), 1454-1472. https://doi.org/10.3390/foods12071454

Jun, J. Y., Jung, M. J., Kim, D. S., Jeong, I. H., & Kim, B. M. (2017). Postmortem changes in physiochemical and sensory properties of red snow crab (Chionoecetes japonicus) leg muscle during freeze storage. Fisheries and Aquatic Sciences, 20(1), 2-7. https://doi.org/10.1186/s41240-017-0057-9

KKP. (2024). Portal Data KKP. https://portaldata.kkp.go.id/.

Misnan, R., Hani, Z., Yadzir, M., Murad, S., Yadzir, M., & Abdullah, N. (2012). Identification of the major allergens of Charybdis feriatus (red crab) and its cross-reactivity with Portunus pelagicus (blue crab). Asian Pacific Journal of Allergy and Immunology. 30(4), 285-293.

Nanda, P. K., Das, A. K., Dandapat, P., Dhar, P., Bandyopadhyay, S., Dib, A. L., Lorenzo, J. M., & Gagaoua, M. (2021). Nutritional aspects, flavour profile and health benefits of crab meat based novel food products and valorisation of processing waste to wealth: A review. Trends in Food Science & Technology, 112, 252–267. https://doi.org/10.1016/j.tifs.2021.03.059

Nishinari, K., Fang, Y., & Rosenthal, A. (2019). Human oral processing and texture profile analysis parameters: Bridging the gap between the sensory evaluation and the instrumental measurements. Journal of Texture Studies, 50(5), 369–380. https://doi.org/10.1111/jtxs.12404

Nugraha, R., Pamingkas, I. D., Pertiwi, R. M., & Nurhayati, T. (2020). Penurunan kandungan protein penyebab alergi pada proses pembuatan surimi ikan nila (Oreochromis niloticus). Jurnal Pengolahan Hasil Perikanan Indonesia, 23(3), 558-565. https://doi.org/10.17844/jphpi.v23i3.33639

Nugraha, R., Ruethers, T., Johnston, E. B., Rolland, J. M., O’Hehir, R. E., Kamath, S. D., & Lopata, A. L. (2021). Effects of extraction buffer on the solubility and immunoreactivity of the Pacific oyster allergens. Foods, 10(2), 409-425. https://doi.org/10.3390/foods10020409

Nugraha, R., Safitri, N. G., Nurilmala, M., & Pertiwi, R. M. (2024). Purifikasi dan karakterisasi parvalbumin patin dan gurami. Jurnal Pengolahan Hasil Perikanan Indonesia, 27(12), 1134–1145. https://doi.org/10.17844/jphpi.v27i12.52147

Nurilmala, M., Safithri, M., Pradita, F. T., & Pertiwi, R. M. (2021). Profil protein ikan gabus (Channa striata), toman (Channa micropeltes), dan betutu (Oxyeleotris marmorata). Jurnal Pengolahan Hasil Perikanan Indonesia, 23(3), 548–557. https://doi.org/10.17844/jphpi.v23i3.33924

Ovissipour, M., Rasco, B., Tang, J., & Sablani, S. (2017). Kinetics of protein degradation and physical changes in thermally processed Atlantic salmon (Salmo salar). Food and Bioprocess Technology, 10(10), 1865–1882. https://doi.org/10.1007/s11947-017-1958-4

Pedrosa, M., Boyano-Martínez, T., García-Ara, C., & Quirce, S. (2015). Shellfish allergy: a comprehensive review. Clinical Reviews in Allergy & Immunology, 49(2), 203–216. https://doi.org/10.1007/s12016-014-8429-8

Pimsannil, K., Palamae, S., Fan, X., Zhao, Q., Zhang, B., & Benjakul, S. (2025). Edible portions of precooked blue swimming crab: Chemical composition and effect of chitooligosaccharide conjugate and high-pressure processing on microbial inactivation. Food Chemistry: X, 25, 102070-102079. https://doi.org/10.1016/j.fochx.2024.102070

Premarathna, A. D., Rajapakse, R. P. V. J., Pathirana, E., Senaratne, V. P., Karunarathna, S. C., & Jayasooriya, A. P. (2015). Nutritional analysis of some selected fish and crab meats and fatty acid analysis of oil extracted from Portunus pelagicus. International Journal of Scientific & Technology Research, 4 (7), 197-201.

Qing, R., Hao, S., Smorodina, E., Jin, D., Zalevsky, A., & Zhang, S. (2022). Protein design: from the aspect of water solubility and stability. Chemical Reviews, 122(18), 14085–14179. https://doi.org/ 10.1021/acs.chemrev.1c00757

Ren, Y., Sun, J., & Mao, X. (2024). Quality changes in gazami crab (Portunus trituberculatus) during refrigeration. Food Chemistry, 437, 137942-137953. https://doi.org/10.1016/J.FOODCHEM.2023.137942

Rolland, J. M., Varese, N. P., Abramovitch, J. B., Anania, J., Nugraha, R., Kamath, S., Hazard, A., Lopata, A. L., & O’Hehir, R. E. (2018). Effect of heat processing on IgE reactivity and cross‐reactivity of tropomyosin and other allergens of asia‐pacific mollusc species: identification of novel sydney rock oyster tropomyosin Sac g 1. Molecular Nutrition & Food Research, 62(14). 1800148-1800160 https://doi.org/10.1002/mnfr.201800148

Ruethers, T., Taki, A. C., Johnston, E. B., Nugraha, R., Le, T. T. K., Kalic, T., McLean, T. R., Kamath, S. D., & Lopata, A. L. (2018). Seafood allergy: A comprehensive review of fish and shellfish allergens. Molecular Immunology, 100, 28–57. https://doi.org/10.1016/j.molimm.2018.04.008

Shi, S., Wang, X., Wu, X., & Shi, W. (2020). Effects of four cooking methods on sensory and taste quality of Portunus trituberculatus. Food Science & Nutrition, 8(2), 1115–1124. https://doi.org/10.1002/FSN3.1398

Smialowski, P., Martin-Galiano, A. J., Mikolajka, A., Girschick, T., Holak, T. A., & Frishman, D. (2007). Protein solubility: sequence based prediction and experimental verification. Bioinformatics, 23(19), 2536–2542. https://doi.org/10.1093/BIOINFORMATICS/BTL623

Sun, B., Zhao, Y., Ling, J., Yu, J., Shang, H., & Liu, Z. (2017). The effects of superchilling with modified atmosphere packaging on the physicochemical properties and shelf life of swimming crab. Journal of Food Science and Technology, 54(7), 1809–1817. https://doi.org/10.1007/s13197-017-2611-y

Sun, K., Pan, C., Chen, S., Tao, F., Liu, S., Zhao, Y., Li, C., & Wang, D. (2023). Quality deterioration of Litopenaeus vannamei associated with protein changes during partial freezing storage. Food Science of Animal Products, 1(1), 1-9. https://doi.org/10.26599/FSAP.2023.9240002

Tavares, J., Martins, A., Fidalgo, L. G., Lima, V., Amaral, R. A., Pinto, C. A., Silva, A. M., & Saraiva, J. A. (2021). Fresh fish degradation and advances in preservation using physical emerging technologies. Foods, 10(4), 780-800. https://doi.org/10.3390/foods10040780

Thomassen, M. R., Kamath, S. D., Bang, B. E., Nugraha, R., Nie, S., Williamson, N. A., Lopata, A. L., & Aasmoe, L. (2021). Occupational allergic sensitization among workers processing king crab (Paralithodes camtschaticus) and edible crab (Cancer pagurus) in Norway and identification of novel putative allergenic proteins. Frontiers in Allergy, 2, 1-13. https://doi.org/10.3389/falgy.2021.718824

Tufan, B. (2023). Biochemical composition of different sex and body parts of blue Crabs (Callinectes sapidus) caught from the Middle Black Sea Coast. Marine Science and Technology Bulletin, 12(1), 104–110. https://doi.org/10.33714/MASTEB.1241601

Vilasoa-Martínez, M., López-Hernández, J., & Lage-Yusty, M. A. (2007). Protein and amino acid contents in the crab, Chionoecetes opilio. Food Chemistry, 103(4), 1330–1336. https://doi.org/10.1016/J.FOODCHEM.2006.10.045

Wang, Z., & Raunser, S. (2023). Structural biochemistry of muscle contraction. Annual Review of Biochemistry, 92(1), 411–433. https://doi.org/10.1146/annurev-biochem-052521-042909

Ward, D. R., Nickelson, R., Finne, G., & Hopson, D. J. (1983). Processing technologies and their effects on microbiological properties, thermal processing efficiency, and yield of blue crab. Marine Fisheries Review, 45, 38–43.

Wu, S., Tong, Y., Zhang, C., Zhao, W., Lyu, X., Shao, Y., & Yang, R. (2021). High pressure processing pretreatment of Chinese mitten crab (Eriocheir sinensis) for quality attributes assessment. Innovative Food Science & Emerging Technologies, 73, 1-8. https://doi.org/10.1016/j.ifset.2021.102793

Xie, Y., Zhao, K., Yang, F., Shu, W., Ma, J., Huang, Y., Cao, X., Liu, Q., & Yuan, Y. (2024). Modification of miofibrillar protein structural characteristics: Effect of ultrasound-assisted first-stage thermal treatment on unwashed Silver Carp surimi gel. Ultrasonics Sonochemistry, 107, 1-12. https://doi.org/10.1016/J.ULTSONCH.2024.106911

Xu, W., Ma, Q., Sun, J., Li, Y., Wang, J., Tang, Y., Liu, Y., Mu, J., & Wang, W. (2022). Changes in quality characteristics of shrimp (Penaeus chinensis) during refrigerated storage and their correlation with protein degradation. Journal of Food Composition and Analysis, 114, 1-9. https://doi.org/10.1016/j.jfca.2022.104773

Ye, T., Chen, X., Chen, Z., Liu, R., Wang, Y., Lin, L., & Lu, J. (2021). Quality characteristics of shucked crab meat (Eriocheir sinensis) processed by high pressure during superchilled storage. Journal of Food Biochemistry, 45(4). 1-12. https://doi.org/10.1111/jfbc.13708

Zainal Abidin, M., Kourmentza, K., & Niranjan, K. (2023). Chitin oligosaccharide N,N′-Diacetylchitobiose (GlcNAc2) as antimicrobial coating against Listeria monocytogenes on ready-to-eat shrimp. Sustainability, 15(13), 1-11. https://doi.org/10.3390/su151310099

Zhang, L., Guo, L., Mu, C., Ye, Y., & Wang, C. (2021). Postmortem metabolite profile changes of mud crab (Scylla paramamosain) under different storage conditions. Journal of Ocean University of China, 20(3), 608–618. https://doi.org/10.1007/s11802-021-4558-x

Zhang, L., Wang, W., Zhou, F., Zheng, Y., & Wang, X. (2020). Meat tenderness and histochemistry of muscle tissues from Eriocheir sinensis. Food Bioscience, 34, 1-12. https://doi.org/10.1016/J.FBIO.2019.100479

Zhang, L., Yin, M., & Wang, X. (2021). Meat texture, muscle histochemistry and protein composition of Eriocheir sinensis with different size traits. Food Chemistry, 338, 1-12. https://doi.org/10.1016/J.FOODCHEM.2020.127632

Zhang, Y., Kim, Y. H. B., Puolanne, E., & Ertbjerg, P. (2022). Role of freezing-induced miofibrillar protein denaturation in the generation of thaw loss: A review. Meat Science, 190, 1-10. https://doi.org/10.1016/j.meatsci.2022.108841

Zhao, J., Timira, V., Ahmed, I., Chen, Y., Wang, H., Zhang, Z., Lin, H., & Li, Z. (2024). Crustacean shellfish allergens: influence of food processing and their detection strategies. Critical Reviews in Food Science and Nutrition, 64(12), 3794–3822. https://doi.org/10.1080/10408398.2022.2135485

Zhou, T., Ding, Y. X., Benjakul, S., Shui, S. S., & Zhang, B. (2023). Characterization of endogenous enzymes in sword prawn (Parapenaeopsis hardwickii) and their effects on the quality of muscle proteins during frozen storage. LWT, 177, 1-8. https://doi.org/10.1016/J.LWT.2023.114563

Zhu, S., Zhang, C., Liu, Y., Jiang, D., Zhao, Q., Mao, X., Hu, X., & Jiang, B. (2025). Effect of protein oxidation on the quality of abalone (Haliotis discus hannai) during frozen storage under different packaging conditions. Food Chemistry: X, 27, 1-10. https://doi.org/10.1016/j.fochx.2025.102357

Published

2025-12-03

How to Cite

Duanassurya, M., Nugraha, R., & Nurilmala, M. (2025). Perubahan profil protein dan tekstur rajungan (Portunus pelagicus) kukus selama penyimpanan dingin dan beku: Alterations in protein profile and texture of steamed blue swimming crab (Portunus pelagicus) during chilled and frozen storage. Jurnal Pengolahan Hasil Perikanan Indonesia, 28(11). https://doi.org/10.17844/y8fdxz35