Kinetika dan termodinamika komposit HAp-Fe3O4 dari cangkang tutut (Bellamya javanica) sebagai adsorben Pb(II) pada limbah akumulator

Kinetics and thermodynamics of HAp–Fe₃O₄ composite from tutut snail shell (Bellamya javanica) as Pb (II) adsorbent in battery wastewater

Authors

  • Muhammad Dicky Iswara Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan, IPB University
  • Charlena Charlena Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan, IPB University https://orcid.org/0009-0002-0941-1095
  • Komar Sutriah Departemen Kimia, Fakultas Matematika dan Ilmu Pengetahuan, IPB University

DOI:

https://doi.org/10.17844/gczc9396

Keywords:

biomaterial, composite material, environmentally friendly adsorbent, green chemistry, heavy metal bioremediation

Abstract

The rapid growth of electric vehicles has led to an increased accumulation of used battery waste containing hazardous heavy metals, particularly Pb(II). Improper management of this waste can severely impact the environment and human health. Adsorption using hydroxyapatite (HAp)-based materials is an effective remediation method. Tutut shells (Bellamya javanica), a biomineral waste rich in calcium carbonate (CaCO3), can serve as a calcium precursor for the green synthesis of HAp. This study aimed to determine the optimum conditions of pH, contact time, temperature, and initial concentration for the HAp–Fe3O4 composite as an adsorbent for Pb(II) ions, assess its adsorption efficiency, evaluate kinetic and thermodynamic parameters, and provide an eco-friendly, sustainable material solution for heavy metal reduction originating from battery waste. The composite was synthesized via chemical deposition, showing a porous structure with a surface area of 3002 m2/g, pore size of 2.21 nm, and pore volume of 3.32 cc/g. Optimum adsorption occurred at a pH of 6, 50 min, 25°C, and an initial concentration of 10 ppm. Kinetic studies followed a pseudo-second-order model (K₂ = 2.23 g/mg·min), indicating chemisorption, whereas thermodynamic parameters (ΔG°<0, ΔH°<0, and ΔS°>0) indicated a spontaneous exothermic process. The Freundlich isotherm model (1/n = 0.82 and KF = 467) exhibited the best fit. Application to real battery wastewater achieved 99.23% removal efficiency, reducing Pb(II) from 2.28 ppm to 0.017 ppm, meeting the quality standard of the Indonesian Ministry of Environment Regulation No. 5 of 2014. These findings suggest that the HAp–Fe₃O₄ composite has strong potential as an effective and sustainable heavy metal adsorbent.

References

Abidin, N. H. Z., Sambudi, N. S., & Kamal, N. A. (2020). Composite of hydroxyapatite-Fe3O4 for the adsorption of methylene blue. ASEAN Journal of Chemical Engineering, 20(2), 140–153. https://doi.org/10.22146/ajche.55015

Abiodun, O. A. O., Oluwaseun, O., Oladayo, O. K., Abayomi, O., George, A. A., Opatola, E., Orah, R. F., Isukuru, E. J., Ede, I. C., Oluwayomi, O. T., Okolie, J. A., & Omotayo, I. A. (2023). Remediation of heavy metals using biomass-based adsorbents: adsorption kinetics and isotherm models. Clean Technologies, 5(3), 934–960. https://doi.org/10.3390/cleantechnol5030047

Akbar, A. F., ’Aini, F. Q., Nugroho, B., & Cahyaningrum, S. E. (2021). Sintesis dan karakterisasi hidroksiapatit tulang ikan baung (Hemibagrus nemurus sp.) sebagai kandidat implan tulang. Jurnal Kimia Riset, 6(2), 93–101. https://doi.org/10.20473/jkr.v6i2.30695

Alfiah, M. N., Hartini, S., & Cahyanti, M. N. (2017). Pemodelan matematika dan sifat termodinamika isoterm sorpsi air tepung singkong terfermentasi angkak. Jurnal Penelitian Kimia, 13(1), 29–40.

Amalia, V., Nisa, A. R., & Hadisantoso, E. P. (2022). Tinjauan nanokomposit hidroksiapatit / Fe3O4 sebagai adsorben logam berat pada air. Gunung Djati Conference Series, 7(2022), 8–24.

Anggraini, N., Agustina, T. E., & Hadiah, F. (2022). Pengaruh pH dalam pengolahan air limbah laboratorium dengan metode adsorpsi untuk penurunan kadar logam berat Pb, Cu, dan Cd. Jurnal Ilmu Lingkungan, 20(2), 345–355. https://doi.org/10.14710/jil.20.2.345-355

Arifiadi, F. (2022). Sintesis dan karakterisasi hidroksiapatit-gibsit. Jurnal Keramik dan Gelas Indonesia, 30(2), 78–89.

Biedrzycka, A., Skwarek, E., & Hanna, U. M. (2021). Hydroxyapatite with magnetic core: Synthesis methods, properties, adsorption and medical applications. Advances in Colloid and Interface Science, 29(1), 1–21. https://doi.org/10.1016/j.cis.2021.102401

[BSN] Badan Standardisasi Nasional. (2004). SNI 06-6989.8-2004. Cara uji timbal (Pb) dengan spektrofotometri serapan atom (SSA)-nyala. Jakarta: Badan Standarisasi Nasional

Cao, W., Yang, Z., Liu, R., Zhang, Z., Chen, G., Zhou, Z., & Xu, L. (2025). Pb2+ adsorption, performance, and response surface optimization of hydroxyapatite nanowire sodium alginate aerogel (HSA). Water, 17(5), 1–21. https://doi.org/10.3390/w17050631

Charlena, Maddu, A., & Hidayat, T. (2022). Synthesis and characterization of hydroxyapatite from green mussel shell with sol-gel method. Jurnal Kimia Valensi, 8(2), 269–279. https://doi.org/10.15408/jkv.v8i2.27494

Charlena, Suparto, I. H., & Laia, D. P. O. (2023). Synthesis and characterization of hydroxyapatite from polymesoda placans shell using wet precipitation method. Jurnal Bios Logos, 13(1), 85–96. https://doi.org/10.35799/jbl.v13i1.47454

Ervianti, T., Ikhtiar, M., Bintara, A., Hasanuddin, & Habo, H. (2021). Analisis risiko kesehatan lingkungan pajanan timbal (Pb) pada Pa’limbang-limbang di Jl.Urip Sumoharjo Kota Makassar. Jurnal Sanitasi dan Lingkungan, 2(1), 128–138.

Ezzeddine, Z., Batonneau-Gener, I., Ghssein, G., & Pouilloux, Y. (2025). Recent advances in heavy metal adsorption via organically modified mesoporous silica: a review. Water, 17(5), 1–17. https://doi.org/10.3390/w17050669

Fiume, E., Magnaterra, G., Rahdar, A., Verné, E., & Baino, F. (2021). Hydroxyapatite for biomedical applications: a short overview. Ceramics, 4(4), 542–563. https://doi.org/10.3390/ceramics4040039

Gheibi, M., Wacławek, S., Leo, C. P., Sadr, S., & Behzadian, K. (2024). Dynamic modelling, simulation, and sensitive analysis of lead removal in a fixed-bed adsorption column using waste-based materials. IOP Conference Series: Earth and Environmental Science, 1368(1), 1–12. https://doi.org/10.1088/1755-1315/1368/1/012009

Habib, A., Ngatijo, & Gusti, D. R. (2019). Sintesis dan karakterisasi magnetit terlapis dimerkaptosilika. Chempublish Journal, 4(2), 81–88. https://doi.org/10.22437/chp.v4i2.8034

Hadi, Z., Hekmat, N., & Soltanolkottabi, F. (2022). Effect of hydroxyapatite on physical, mechanical, and morphological properties of starch-based bio-nanocomposite films. Composites and Advanced Materials, 31(1), 1–10. https://doi.org/10.1177/26349833221087755

Hariani, P. L., Said, M., Rachmat, A., & Sari, S. P. (2021). Hydroxyapatite-peg/Fe3O4 composite for adsorption of phenol from aqueous solution. Polish Journal of Environmental Studies, 30(2), 1621–1629. https://doi.org/10.15244/pjoes/125769

Hui, K. C., Kamal, N. A., Sambudi, N. S., & Bilad, M. R. (2021). Magnetic hydroxyapatite for batch adsorption of heavy metals. E3s Web of Conferences, 287(7), 3–8. https://doi.org/10.1051/e3sconf/202128704005

Iconaru, S. L., Motelica-Heino, M., Guegan, R., Beuran, M., Costescu, A., & Predoi, D. (2018). Adsorption of Pb (II) ions onto hydroxyapatite nanopowders in aqueous solutions. Materials, 11(11), 1–17. https://doi.org/10.3390/ma11112204

Invernizzi, C., Rovetta, T., Licchelli, M., & Malagodi, M. (2018). Mid and near-infrared reflection spectral database of natural organic materials in the cultural heritage field. International Journal of Analytical Chemistry, 2018(1), 1–16. https://doi.org/10.1155/2018/7823248

Iskandar, D. J., Fadli, A., & Amri, I. (2019). Sintesis komposit Fe3O4/hidroksiapatit menggunakan metode kopresipitasi dengan variasi suhu sintering dan penambahan Fe3O4. Jom FTEKNIK, 6(2), 2–7.

Li, X., Cui, Y., Du, W., Cui, W., Huo, L., & Liu, H. (2024). Adsorption kinetics and mechanism of Pb(II) and Cd(II) adsorption in water through oxidized multiwalled carbon nanotubes. Applied Sciences, 14(5), 1–13. https://doi.org/10.3390/app14051745

Lubis, R. A. F., Nasution, H. I., & Zubir, M. (2020). Production of Activated carbon from natural sources for water purification. Indonesian Journal of Chemical Science and Technology (IJCST), 3(2), 67–73. https://doi.org/10.24114/ijcst.v3i2.19531

Mashentseva, A. A., Seitzhapar, N., Barsbay, M., Aimanova, N. A., Alimkhanova, A. N., Zheltov, D. A., Zhumabayev, A. M., Temirgaziev, B. S., Almanov, A. A., & Sadyrbekov, D. T. (2023). Adsorption isotherms and kinetics for Pb(II) ion removal from aqueous solutions with biogenic metal oxide nanoparticles. RSC Advances, 13(38), 26839–26850. https://doi.org/10.1039/d3ra05347d

Maslukah, L., Zainuri, M., Wirasatriya, A., & Widiaratih, R. (2020). Studi kinetika adsorpsi dan desorpsi ion fosfat (PO42-) di sedimen perairan Semarang dan Jepara. Jurnal Ilmu dan Teknologi Kelautan Tropis, 12(2), 385–396. https://doi.org/10.29244/jitkt.v12i2.32392

Naat, J. N., Kefi, L. G., & Lawa, Y. (2021). pH dan waktu kontak adsorpsi ion logam Cu(II) menggunakan adsorben silika yang bersumber dari pasir alam takari. . Jurnal Beta Kimia, 1(1), 42–50. https://doi.org/10.35508/jbk.v1i1.7683

Neolaka, Y. A. B., Lawa, Y., Naat, J. N., Nubatonis, Y. K., & Riwu, A. A. P. (2019). Studi termodinamika adsorpsi Pb (II) menggunakan adsorben magnetik GO-Fe3O4 yang disintesis dari kayu kusambi (Schleichera oleosa). Jurnal Saintek Lahan Kering, 2(2), 49–51. https://doi.org/10.32938/slk.v2i2.858

Nguyen, M. D., Tran, H. V., Xu, S., & Lee, T. R. (2021). Fe3O4 nanoparticles: structures, synthesis, magnetic properties, surface functionalization, and emerging applications. Applied Sciences, 11(23), 1–4. https://doi.org/10.3390/app112311301

Nur, A. I., & Kurniawan, A. D. (2021). Proyeksi masa depan kendaraan listrik di indonesia: analisis perspektif regulasi dan pengendalian dampak perubahan iklim yang berkelanjutan. Jurnal Hukum Lingkungan Indonesia, 7(2), 197–220. https://doi.org/10.38011/jhli.v7i2.260

Onwubu, S. C., Naidoo, D., Mkhize, S. C., Mabaso, N. L. N., Mdluli, P. S., & Thakur, S. (2020). An investigation in the remineralization and acid resistant characteristics of nanohydroxyapatite produced from eggshell waste via mechanochemistry. Journal of Applied Biomaterials and Functional Materials, 18(1), 1–8. https://doi.org/10.1177/2280800020968352

Pérez-Solis, R., Gervacio-Arciniega, J. J., Joseph, B., Mendoza, M. E., & Moreno, A. (2018). Synthesis and characterization of a monoclinic crystalline phase of hydroxyapatite by synchrotron X-ray powder diffraction and piezoresponse force microscopy. Crystals, 8(12), 1–11. https://doi.org/10.3390/cryst8120458

Poonam, Bharti, S. K., & Kumar, N. (2018). Kinetic study of lead (Pb2+) removal from battery manufacturing wastewater using bagasse biochar as biosorbent. Applied Water Science, 8(4), 1–13. https://doi.org/10.1007/s13201-018-0765-z

Pranoto, P., Martini, T., & Rachmawati, D. A. (2018). Karakterisasi dan uji efektivitas allophane-like untuk adsorpsi ion logam tembaga (Cu). ALCHEMY Jurnal Penelitian Kimia, 14(2), 202–218. https://doi.org/10.20961/alchemy.14.2.18538.202-218

Prasetyo, K., Azis, Y., & Komalasari. (2018). Adsorpsi logam Cd, Cu dan Pb dengan menggunakan hidroksiapatit (HA) sebagai adsorban. Jom FTEKNIK, 5(2), 1–4.

Radoń, A., Drygała, A., Hawełek, Ł., & Łukowiec, D. (2017). Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers. Materials Characterization, 131(1), 148–156. https://doi.org/10.1016/j.matchar.2017.06.034

Rahman, A., & Sedyadi, E. (2022). Kajian adsorpsi komposit Fe3O4-lempung terhadap ion logam Pb(II). Indonesian Journal of Materials Chemistry, 3(2), 67–72. https://doi.org/10.14421/ijmc.v3i2.3917

Ramdani, A., Kadeche, A., Adjdir, M., Taleb, Z., Ikhou, D., Taleb, S., & Deratani, A. (2020). Lead and cadmium removal by adsorption process using hydroxyapatite porous materials. Water Practice and Technology, 15(1), 130–141. https://doi.org/10.2166/wpt.2020.003

Rochmah, V., Prasetya, A. T., & Sulistyaningsih, D. T. (2017). Adsorpsi Ion Logam Pb2+ menggunakan limbah serbuk gergaji kayu mahoni. Indonesian Journal of Chemical Science, 6(2), 168–172.

Sahadat Hossain, M., & Ahmed, S. (2023). FTIR spectrum analysis to predict the crystalline and amorphous phases of hydroxyapatite: a comparison of vibrational motion to reflection. RSC Advances, 13(21), 14625–14630. https://doi.org/10.1039/d3ra02580b

Salsabila, N., Amalia, V., & Fitriyani, R. (2023). Sintesis dan karakterisasi komposit HAp/Fe3O4 dari tulang sapi sebagai adsorben ion logam timbal (II). Seminar Nasional Kimia, 1(1), 49–59.

Saputra, K., Sutriyono, S., & Brata, B. (2018). Populasi dan distribusi keong mas (Pomacea canaliculata L.) sebagai sumber pakan ternak pada ekosistem persawahan di Kota Bengkulu. Jurnal Sain Peternakan Indonesia, 13(2), 189–201. https://doi.org/10.31186/jspi.id.13.2.189-201

Shevchenko, I., Engelbrecht, J. P., Mostamandi, S., & Stenchikov, G. (2021). Evaluation of minerals being deposited in the Red Sea using gravimetric, size distribution, and mineralogical analysis of dust deposition samples collected along the Red Sea coastal plain. Aeolian Research, 52(2021), 1–22. https://doi.org/10.1016/j.aeolia.2021.100717

Tukan, D. N., Rosmainar, L., Kustomo, K., & Rasidah, R. (2023). A review: optimum conditions for magnetite synthesis (Fe3O4). Jurnal Berkala Ilmiah Sains dan Terapan Kimia, 17(2), 15–21. https://doi.org/10.20527/jstk.v17i2.15134

Vahdat, A., Ghasemi, B., & Yousefpour, M. (2019). Synthesis of hydroxyapatite and hydroxyapatite/Fe3O4 nanocomposite for removal of heavy metals. Environmental Nanotechnology, Monitoring and Management, 12(2019), 1–9. https://doi.org/10.1016/j.enmm.2019.100233

Vinayagam, R., Zhou, C., Pai, S., Varadavenkatesan, T., Narasimhan, M. K., Narayanasamy, S., & Selvaraj, R. (2021). Structural characterization of green synthesized magnetic mesoporous Fe3O4NPs@ME. Materials Chemistry and Physics, 262(2021), 1–11. https://doi.org/10.1016/j.matchemphys.2021.124323

Wang, X., Wang, G., Marchetti, A., Wu, L., Wu, L., & Guan, Y. (2019). Preparation of porous hydroxyapatite and its application in Pb ions effective removal. AIP Advances, 9(2), 1–10. https://doi.org/10.1063/1.5086705

Wardiana, I. W. G. S., Setyarini, P. H., & Widodo, T. D. (2022). Pengaruh penambahan hidroksiapatit dan kitosan pada pla dan abs terhadap sifat mekanik dari komposit biomaterial. Jurnal Rekayasa Mesin, 13(3), 837–846. https://doi.org/10.21776/jrm.v13i3.1224

Wei, J., Xu, H., Sun, Y., Liu, Y., Yan, R., Chen, Y., & Zhang, Z. (2024). Magnetite nanoparticle assemblies and their biological applications: a review. Molecules, 29(17), 1–16. https://doi.org/10.3390/molecules29174160

Wijayanti, I. E., & Kurniawati, E. A. (2019). Studi kinetika adsorpsi isoterm persamaan langmuir dan freundlich pada abu gosok sebagai adsorben. EduChemia (Jurnal Kimia dan Pendidikan), 4(2), 175–184. https://doi.org/10.30870/educhemia.v4i2.6119

Wulandari, W., Rio, A., & Pratama Istiadi, D. (2018). Karakterisasi dan kinetika kalsinasi dolomit characterization and kinetics of dolomite calcination. Teknologi Bahan dan Barang Teknik, 8(2), 71–76.

Published

2025-12-03

How to Cite

Iswara, M. D. ., Charlena, C., & Sutriah, K. . (2025). Kinetika dan termodinamika komposit HAp-Fe3O4 dari cangkang tutut (Bellamya javanica) sebagai adsorben Pb(II) pada limbah akumulator: Kinetics and thermodynamics of HAp–Fe₃O₄ composite from tutut snail shell (Bellamya javanica) as Pb (II) adsorbent in battery wastewater. Jurnal Pengolahan Hasil Perikanan Indonesia, 28(11). https://doi.org/10.17844/gczc9396