Sustainable production of lutein from microalgae C. vulgaris: Isolation, characterization, and antioxidant potential

Produksi lutein berkelanjutan dari mikroalga C. vulgaris: Isolasi, karakterisasi, dan potensi antioksidan

Authors

DOI:

https://doi.org/10.17844/jphpi.v28i7.64204

Keywords:

bioactive compounds, carotenoids, FTIR spectroscopy, IC50 value, nutraceuticals

Abstract

Lutein is a carotenoid pigment with significant antioxidant potential and health benefits, including the prevention of eye diseases, protection of the skin from UV damage, and reduction of cancer risk. Currently, marigold flowers are the primary source of lutein production. However, its production is limited by seasonal and climatic dependencies, high labor costs and extensive land use. Chlorella vulgaris is a viable alternative with higher growth rates, reduced land and water requirements, and year-round availability. This study aimed to isolate lutein from Chlorella vulgaris and evaluate its characteristics and antioxidant properties. The method used was a descriptive experimental design consisting of several stages: (1) maceration, (2) saponification, (3) identification, (4) isolation, (5) characterization of lutein isolation results, and (6) antioxidant activity assessment. The results showed that maceration yielded 8.01% lutein, whereas saponification yielded 24.37%. Column chromatography identified the third fraction as lutein, which was confirmed by FTIR analysis, revealing alkenyl, alkyl, alkene, aromatic (C=C), (C−H), and hydroxyl (−OH) groups. The isolate exhibited a yellow value of 66.79 and a hue angle of 88.65, which is consistent with the characteristic color of lutein. Antioxidant testing revealed an IC50 value of 62.54 ppm, indicating strong antioxidant activity. In conclusion, Chlorella vulgaris is a promising alternative source of lutein with potent antioxidant properties.

References

[AOAC] Association of official methods of analytical chemists. (2005). Official Methods of Analysis of the Association of Official Analytical Chemist, 18.

Alotaibi, H. N., Anderson, A. K., & Sidhu, J. S. (2021). Influence of lutein content of marigold flowers on functional properties of baked pan bread. Annals of Agricultural Sciences, 66(2), 162-168. https://doi.org/10.1016/j.aoas.2021.12.002

Amaro, H., Fernandes, F., Valentão, P., Andrade, P., Sousa‐Pinto, I., Malcata, F., & Guedes, A. (2015). Effect of solvent system on extractability of lipidic components of Scenedesmus obliquus (M2-1) and Gloeothece sp. on antioxidant scavenging capacity thereof. Marine Drugs, 13(10), 6453-6471. https://doi.org/10.3390/md13106453

Andrade, M. K. A., Lauritano, C., Romano, G., & Ianora, A. (2018). Marine microalgae with anti-cancer properties. Marine drugs. 16(5), 1-17. https://doi.org/10.3390/md16050165

Atta, Mohamed, N., & Abdelgawad, A. (2017). Antioxidants: an overview on the natural and synthetic types. European Chemical Bulletin, 6(8), 365-375. https://doi.org/10.17628/ecb.2017.6.365-375

Bahriul, P., Rahman, N., & Diah, A. W. M. (2014). Uji aktivitas antioksidan ekstrak daun salam (Syzygium polyanthum) dengan antioxsidant activity test of bay leave (Syzygium polyanthum) extract using. Jurnal Akademika Kimia. 3(3), 143–149.

Bazarnova, J., Smyatskaya, Y., Shlykova, A., Balabaev, A., & Ðurović, S. (2022). Obtaining fat-soluble pigments—carotenoids from the biomass of chlorella microalgae. Applied Sciences. 12(7), 3246. https://doi.org/10.3390/app12073246

Berkani, F., Serralheiro, M., Dahmoune, F., Mahdjoub, M., Kadri, N., Dairi, S., & Madani, K. (2021). Ziziphus lotus (l.) lam. plant treatment by ultrasounds and microwaves to improve antioxidants yield and quality: an overview. The North African Journal of Food and Nutrition Research, 5(12), 53-68. https://doi.org/10.51745/najfnr.5.11.53-68

Bernstein, P. S., Li, B., Vachali, P. P., Gorusupudi, A., Shyam, R., Henriksen, B. S., & Nolan, J. M. (2016). Progress in retinal and eye research lutein, zeaxanthin, and meso -zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Progress in Retinal and Eye Research, 50, 34–66. https://doi.org/10.1016/j.preteyeres.2015.10.003

Boonnoun, P., Opaskonkun, T., Prasitchoke, P., Goto, M., & Shotipruk, A. (2012). Purification of free lutein from marigold flowers by liquid chromatography. Engineering Journal, 16(5), 145-156. https://doi.org/10.4186/ej.2012.16.5.145

Cai, X., Huang, Q., & Wang, S. (2015). Isolation of a novel lutein-protein complex from Chlorella vulgaris and its functional properties. Food & function, 6, 1893-9. https://doi.org/10.1039/c4fo01096e

Caliskan, G., & Dirim, S. N. (2016). The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technology, 287, 308–314. https://doi.org/10.1016/j.powtec.2015.10.019

Chamidah, A., Afrilia, H. C., Ahmad, M. G., & Arisandi, D. (2024). Isolasi klorofil a dan analisis aktivitas antioksidan dari mikroalga C. vulgaris. Jurnal Pengolahan Hasil Perikanan Indonesia, 27(11), 1006-1020. http://dx.doi.org/10.17844/jphpi.v27i11.57470

Chen, C., Hsieh, C., Lee, D., Chang, C., & Chang, J. (2016). Production, extraction and stabilization of lutein from microalga Chlorella sorokiniana MB-1. Bioresource Technology, 200, 500-505. https://doi.org/10.1016/j.biortech.2015.10.071

Derrien, M., Badr, A., Gosselin, A., Desjardins, Y., & Angers, P. (2019). Optimization of a sustainable purification protocol for lutein and chlorophyll from spinach by-products by a saponification procedure using box behnken design and desirability function. Food and Bioproducts Processing, 116, 54-62. https://doi.org/10.1016/j.fbp.2019.04.006

Dinh, C. T., Do, C. V. T., Phuong, T., Nguyen, T., Hieu, N., Giang, T., & Dang, T. (2022). Isolation, purification and cytotoxic evaluation of lutein from mixotrophically grown Chlorella sorokiniana TH01. Algal Research, 62, 1-11. https://doi.org/10.1016/j.algal.2022.102632

Fábryová, T., Kubáč, D., Kuzma, M., Hrouzek, P., Kopecký, J., Tůmová, L., & Cheel, J. (2021). High-performance countercurrent chromatography for lutein production from a chlorophyll-deficient strain of the microalgae Parachlorella kessleri HY1. Journal of Applied Phycology, 33(4), 1999–2013. https://doi.org/10.1007/s10811-021-02434-y

Fuentes, J., Montero, Z., Cuaresma, M., Ruiz‐Domínguez, M., Mogedas, B., Garbayo, I., & Vı́lchez, C. (2020). Outdoor large-scale cultivation of the acidophilic microalga Coccomyxa onubensis in a vertical closed photobioreactor for lutein production. Processes, 8(3), 324. https://doi.org/10.3390/pr8030324

Gayathri, S., Rajasree, S. R. R., Kirubagaran, R., Aranganathan, L., & Suman, T. Y. (2016). Spectral characterization of β, ε-carotene-3, 3′-diol (lutein) from marine microalgae Chlorella salina. Renewable Energy, 98, 78–83. https://doi.org/10.1016/j.renene.2016.04.065

Hynstova, V., Sterbova, D., Klejdus, B., Hedbavny, J., Huska, D., & Adam, V. (2018). Separation, identification and quantification of carotenoids and chlorophylls in dietary supplements containing Chlorella vulgaris and Spirulina platensis using high performance thin layer chromatography. Journal of Pharmaceutical and Biomedical Analysis, 148, 108-118. https://doi.org/10.1016/j.jpba.2017.09.018

Iwamoto, H., Soccol, C., Molina-Aulestia, D., Cardoso, J., De Melo Pereira, G., De Souza Vandenberghe, L., Manzoki, M., Ambati, R., Ravishankar, G., & De Carvalho, J. (2024). Lutein from microalgae: an industrial perspective of its production, downstream processing, and market. Fermentation, 10(2), 106. https://doi.org/10.3390/fermentation10020106

Iyer, G., Nagle, V., Gupte, Y.V., Desai, S., & Iyer, M. (2015). Characterization of high carotenoid producing Coelastrella oocystiformis and its anti-cancer potential, Int.J.Curr.Microbiol.App.Sci, 4(10), 527-536

Izanlou, Z., Mahdavi, M., Gheshlaghi, R., & Karimian, A. (2023). Sequential extraction of value-added bioproducts from three Chlorella strains using a drying-based combined disruption technique. Bioresources and Bioprocessing, 10(1), 44. https://doi.org/10.1186/s40643-023-00664-1

Jaime, L., Mendiola, J. A., Herrero, M., Soler‐Rivas, C., Santoyo, S., Señorans, F. J., Cifuentes, A., & Ibáñez, E. (2019). Separation and characterization of antioxidants from Spirulina platensis microalga combining pressurized liquid extraction, TLC, and HPLC‐DAD. Journal of Separation Science, 28(16), 2–28. https://doi.org/10.1002/jssc.200500185

Kashyap, P. K., Singh, S., Kumar Singh, M., Gupta, A., Tandon, S., Shanker, K., Kumar Verma, R., & Swaroop Verma, R. (2022). An efficient process for the extraction of lutein and chemical characterization of other organic volatiles from marigold (Tagetes erecta L.) flower. Food Chemistry, 396, 1-8. https://doi.org/10.1016/j.foodchem.2022.133647

Kondororik, F., Martosupono, M., & Susanto, A. B. (2016). Identifikasi komposisi pigmen, isolasi, dan aktivitas antioksidan β karoten pada rumput laut merah Gracilaria gigas hasil budidaya. Jurnal Biologi dan Pembelajaran, 3(1), 1–9. https://doi.org/10.29407/jbp.v3i1.443

Kriechbaum, R., Spadiut, O., & Kopp, J. (2024). Bioconversion of furanic compounds by Chlorella vulgaris—unveiling biotechnological potentials. Microorganisms, 12(6), 1222. https://doi.org/10.3390/microorganisms12061222

Kurniawan, J. M., Yusuf, M. M., & Azmi, S. S. (2019). Effect of drying treatments on the contents of lutein and zeaxanthin in orange-and yellow-cultivars of marigold flower and its application for lutein ester encapsulation. IOP Conference Series: Materials Science and Engineering, 509, 1–12. https://doi.org/10.1088/1757-899X/509/1/012060

Kusbandari, A. & Susanti, H. (2017). Kandungan beta karoten dan aktivitas penangkapan radikal bebas terhadap DPPH (1,1-difenil 2-pikrilhidrazil) ekstrak buah blewah (Cucumis melo var. Cantalupensis L) secara spektrofotometri UV-Visibel. Jurnal Farmasi Sains dan Komunitas, 14(1), 37-42. https://doi.org/10.24071/jpsc.141562

Kusmiati, Wijaya, I. G. A. K., & Yadi. (2018). Uji potensi antioksidan ekstrak lutein bunga kenikir (Tagetes erecta) berwarna kuning dan jingga dengan metode FRAP dan DPPH. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, 4(2), 274–279. https://doi.org/10.13057/psnmbi/m040231

Lasmarito, T. C., Widianingsih, W., & Endrawati, H. (2022). Lutein content of microalgae Chlorella vulgaris with different salinity in culture media. Journal of Marine Research, 11(2), 320-326. https://doi.org/10.14710/jmr.v11i2.33819

Li, N., Wu, X., Zhuang, W., Xia, L., Chen, Y., Wang, Y., Wu, C., Rao, Z., Du, L., Zhao, R., Yi, M., Wan, Q., & Zhou, Y. (2021). Green leafy vegetable and lutein intake and multiple health outcomes. Food Chemistry, 360, 130145. https://doi.org/10.1016/j.foodchem.2021.130145

Limantara, L. & Heriyanto. (2010). Studi komposisi pigmen dan kandungan fukosantin rumput laut cokelat dari perairan Madura dengan kromatografi cair kinerja tinggi. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 15(1), 23-32. https://doi.org/10.14710/ik.ijms.15.1.23-32

Lin, J. H., Lee, D. J., & Chang, J. S. (2015). Lutein production from biomass: Marigold flowers versus microalgae. Bioresource Technology, 184, 421–428. https://doi.org/10.1016/j.biortech.2014.09.099

Low, K. L., Idris, A., & Mohd Yusof, N. (2020). Novel protocol optimized for microalgae lutein used as food additives. Food Chemistry, 307, 1-9. https://doi.org/10.1016/j.foodchem.2019.125631

Lumba, R., Mamuaja, I. C. F., Djarkasi, I. G. S. S., Sumual, I. M. F., Pertanian, J. T., & Ratulangi, U. S. A. M. (2013). Kajian pembuatan beras analog berbasis tepung umbi daluga (Cyrtosperma merkusii Hassk Schott). Cocos, 2(1), 1-12. https://doi.org/10.35791/cocos.v2i1.724

Migas, P., Stempka, N., & Krauze-Baranowska, M. (2020). The use of thin-layer chromatography in the assessment of the quality of lutein-containing dietary supplements. J. of Planar Chromatography, 33, 11-18, https://doi.org/10.1007/s00764-019-00001-3

Molino, A., Mehariya, S., Iovine, A., Larocca, V., Sanzo, G., Martino, M., & Musmarra, D. (2018). Extraction of astaxanthin and lutein from microalga Haematococcus pluvialis in the red phase using CO2 supercritical fluid extraction technology with ethanol as co-solvent. Marine Drugs, 16(11), 432. https://doi.org/10.3390/md16110432

Muszyńska, B., Krakowska, A., Lazur, J., Jękot, B., Zimmer, Ł., Szewczyk, A., & Opoka, W. (2017). Bioaccessibility of phenolic compounds, lutein, and bioelements of preparations containing Chlorella vulgaris in artificial digestive juices. J. of Applied Phycology, 30(3), 1629-1640. https://doi.org/10.1007/s10811-017-1357-2

Niu, G., Guo, Q., Wang, J., Alam, S., He, Y., & Liu, L. (2020). Structural basis for plant lutein biosynthesis from α -carotene. Proceedings of the National Academy of Sciences. 177(25), 1–8. https://doi.org/10.1073/pnas.2001806117

Noviantari, N. P., Suhendra, L., & Wartini, N. M. (2017). Pengaruh ukuran partikel bubuk dan konsentrasi pelarut aseton terhadap karakteristik ekstrak warna Sargassum polycystum. Jurnal Rekayasa dan Manajemen Agroindustri, 5(3), 102-112. https://ojs.unud.ac.id/index.php/jtip/article/download/35507/21419

Patel, A., Rova, U., Christakopoulos, P., & Μάτσακας, Λ. (2022). Microalgal lutein biosynthesis: Recent trends and challenges to enhance the lutein content in microalgal cell factories. Frontiers in Marine Science, 9, 1015419. https://doi.org/10.3389/fmars.2022.1015419

Permatasari, R. (2013). Ekstraksi dan isolasi pigmen β-karoten dari alga cokelat Sargassum cristaefolium segar dan "teh" rumput laut. [Skripsi]. Universitas Brawijaya.

Prabhu, A., Abdul, K. S., & Rekha, P. D. (2015). Isolation and purification of lutein from indian spinach Basella alba. Research Journal of Pharmacy and Technology, 8(10), 707–709. https://doi.org/10.5958/0974-360X.2015.00247.4

Prueser, T., Braun, P., Griehl, C., & Wiacek, C. (2024). In vitro toxicity of microalgae species of the phyla Chlorophyta and Ochrophyta in CHO-K1 and Hep G2 cells for potential use in human nutrition. FNDS, 141-155. https://doi.org/10.55976/fnds.220241297141-155

Rahman, D. Y. Praharyawan, S., Apriastini, M., Nurcahyani, P. R., Nafisyah, A. L., Fatriasari, W., Amrullah, A., & Farobie, O. (2025). Phycocyanin production from Galdieria sulphuraria 009 in palm oil mill effluent: growth, extraction, and antioxidant activity. Jurnal Pengolahan Hasil Perikanan Indonesia, 28(5), 494-509. http://dx.doi.org/10.17844/jphpi.v28i5.63115

Ru, I., Sung, Y., Jusoh, M., Wahid, M., & Nagappan, T. (2020). Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology, 1(1), 2-11. https://doi.org/10.1080/26388081.2020.1715256

Serra, T., Silva, S., Gouveia, L., Alexandre, A., Pereira, C., Pereira, A., & Bronze, M. (2021). A single dose of marine Chlorella vulgaris increases plasma concentrations of lutein, β-carotene and zeaxanthin in healthy male volunteers. Antioxidants, 10(8), 1164. https://doi.org/10.3390/antiox10081164

Susanti, R., Hanif, A., & Lisdayani. (2018). Analisa kadar kuantitatif senyawa lutein dari tanaman kenikir (Tagetes erecta L.) sebagai mikrohabitat dari musuh alami hama. AGRIUM: Jurnal Ilmu Pertanian. 21(3), 230–233. https://doi.org/10.30596/agrium.v21i3.2455

Wei, G., Du, S., Xu, S., Wang, Y., Jia, L., Liu, S., … & Wang, J. (2021). Unraveling the molecular mechanisms that influence the color and stability of four lutein crystal forms. Crystal Growth & Design, 21(3), 1762-1777. https://doi.org/10.1021/acs.cgd.0c01648

Wu K, Lai J, Zhang Q, Wang Y, Cui X, Liu Y, Wu X, Yu Z, & Ruan R. (2024). Optimizing Chlorella vulgaris cultivation to enhance biomass and lutein production. Foods, 13(16), 2514. https://doi.org/10.3390/foods13162514

Yin, Y., & Miao, X. (2023). Sustainable lutein production from Chlorella sorokiniana NIES-2168 by using aquaculture wastewater with two-stage cultivation strategies. Water, 16(1), 79. https://doi.org/10.3390/w16010079

Zhao, W., Cui, X., Wang, Z. Q., Yao, R., Chen, M. D., Gao, B. Y., Zhang, C. W., & Niu, J. (2022). Effects of Barranca yajiagengensis powder in the diet of trachinotus ovatus on the growth performance, antioxidant capacity, immunity and morphology of the liver and intestine. Antioxidants, 11(7), 1220. https://doi.org/10.3390/antiox11071220

Zheng, H., Wang, Y., Li, S., Nagarajan, D., Varjani, S., Lee, D. J., & Chang, J. S. (2022). Recent advances in lutein production from microalgae. Renewable And Sustainable Energy Reviews, 153, 1-19. https://doi.org/10.1016/j.rser.2021.111795

Downloads

Published

2025-07-30

How to Cite

Chamidah, . A., Intan Salsabila, . C., Arisandi, . D., & Gulam Ahmad, . M. (2025). Sustainable production of lutein from microalgae C. vulgaris: Isolation, characterization, and antioxidant potential : Produksi lutein berkelanjutan dari mikroalga C. vulgaris: Isolasi, karakterisasi, dan potensi antioksidan. Jurnal Pengolahan Hasil Perikanan Indonesia, 28(7), 633-647. https://doi.org/10.17844/jphpi.v28i7.64204