Dampak konsumsi ikan columbia catfish dari kolam bekas peleburan aki bekas terhadap penyakit degeneratif dan keamanan pangannya
The impact of consuming driftwood catfish from a former used battery smelting pond on degenerative diseases and its food safety
DOI:
https://doi.org/10.17844/jphpi.v28i4.63319Keywords:
cancerous, hazard index, heavy metals, non-cancerous diseases, target hazard quotientAbstract
Cinangka Village, located in Bogor, was historically known as a site for illegal battery recycling. However, the activity ceased 15 years ago. The aim of this study was to determine the potential health impacts of consuming Columbia catfish raised in a pond contaminated by used battery smelting and its potential for causing cancer, non-cancer degenerative diseases, and affecting food safety. The study included testing for heavy metal content in the fish flesh and dissolved metals in the water using XRF and AAS techniques. It also calculated bioconcentration factors and assessed health risks associated with fish consumption, both for cancer and non-cancer conditions, in relation to food safety. The results indicated that the fish is capable of effectively accumulating heavy metals in its body. The flesh was found to be contaminated with Fe (537.53 ppm), Cu (47.69 ppm), Zn (942.53 ppm), As (11.58 ppm), and Pb (13.07 ppm). The pond water itself was contaminated with Fe, Zn, As, Pb, and Cu. Bioconcentration of these metals was observed in the flesh, with Fe (658.33), Cu (4541.90), Zn (17357.83), As (9.94), and Pb (142.53). The Target Hazard Quotient (THQ) > 1 value for all heavy metals in children, while for adults, the THQ > 1 only for Zn, As, and Pb. Both children and adults had a Hazard Index (HI) > 1, indicating that consuming these fish presents a risk of non-cancer degenerative diseases. Consuming fish poses a cancer risk, with the risk level being low to medium for adults and medium to high for children. The safe daily consumption of Columbia catfish for children is 0.004 grams per day, while for adults, it is 0.015 grams per day. The maximum safe consumption limit is 0.026 kg/week for children and 0.091 kg/week for adults. Children are notably more vulnerable to these risks than adults.
References
Adryansyah, A., Hartono, D. M., & Said, C. A. A. (2019). Pemulihan lahan terkontaminasi dari kegiatan peleburan aki bekas tanpa izin di Desa Cinangka, Kabupaten Bogor. Indonesian Journal of Environmental Education and Management, 4(1), 1-10. https://doi.org/doi.org/10.21009/jgg.041.01
Al-Jufaili, S. M., Adel, M., Shekarabi, S. P. H., Copat, C., & Velisek, J. (2024). Trace elements in the muscle and liver tissues of Garra shamal from the freshwater ecosystem of Oman: an exposure risk assessment. Environmental Science and Pollution Research, 31, 15199–15208.
Al-Mzaien, A. K. (2021). Heavy metals and carcinogenesis: a review. Muthanna Medical Journal, 8(1), 20–30.
Ali, H., & Khan, E. (2018). What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’ – proposal of a comprehensive definition. Toxicological & Environmental Chemistry, 100(1), 6-19. https://doi.org/10.1080/02772248.2017.1413652
Ali, H.; Khan, E.; Ilahi, I., (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, (2019): 6730305. https://doi.org/10.1155/2019/6730305
Annashr, N. N. (2015). Hubungan Kadar Timbal dalam Darah dengan Kadar Hemoglobin (Hb) dan Eritrosit Berbintik Basofilik pada Siswa Sekolah Dasar (SD) di Desa Cinangka Kecamatan Ciampea Kabupaten Bogor Tahun 2014. [Tesis]. Universitas Indonesia.
Aregbesola, A., Melloa, V. D. F., Lindströmb, J., Voutilainen, S., Virtanen, J. K., Kiukaanniemi, S. K., Tuomainen, T. P., Tuomilehto, J., & Uusitupa, M. (2018). Serum adiponectin/ Ferritin ratio in relation to the risk of type 2 diabetes and insulin sensitivity. Diabetes Research and Clinical Practice, 141(2018), 264–274 https://doi.org/10.1016/j.diabres.2018.05.012
Arnot, J. A., & Gobas, F. A. P. C. (2003). A generic QSAR for assessing the bioaccumulation potential of organic chemicals in aquatic food webs. QSAR and Combinatorial Science, 22(3), 337-345.
Bakar A. N., Wan Ibrahim, W. N., & Mohd Faudzi, S. M. (2024). Arsenic contamination in rice and drinking water: An insight on human cognitive function. Journal of Hazardous Materials Advances, 17, 100543. https://doi.org/10.1016/j.hazadv.2024.100543
Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691
Cheng, W. H., & Yap, C. K. (2015). Potential human health risks from toxic metals via mangrove snail consumption and their ecological risk assessments in the habitat sediment from Peninsular Malaysia Malacca. Chemosphere, 135, 156–165. https://doi.org/10.1016/j.chemosphere.2015.04.013.
David, G. S., & Isangedighi, I. A. (2019). Heavy metals contamination in fish: effects on human health. Journal of Aquatic Science and Marine Biology, 2(4), 7–12.
Dehari-Zeka, M., Letaj, K. R., Selimi, Q. I., & Elezaj, I. R. (2020). Blood lead level (BLL), δ-aminolevulinic acid dehydratase activity (ALAD), hemoglobin (Hb) and hematocrit (hct) in primary school-children and adult residents living in smelter rural areas in Kosovo. Journal of Environmental Science and Health, 55(10), 1179-1187, https://doi.org/10.1080/10934529.2020.1780851
Dietert, R. R., & Piepenbrink M. S. (2006). Lead and immune function. Critical Reviews in Toxicology, 36(4), 359–385. https://doi.org/10.1080/10408440500534297
Edokpayi, J. N., Enitan, A. M., Mutileni, N., & Odiyo, J.O. (2018). Evaluation of water quality and human risk assessment due to heavy metals in groundwater around Muledane area of Vhembe District, Limpopo Province, South Africa. Chemistry Central Journal, 12(1), 1-16 https://dx.doi.org/10.1186/s13065-017-0369-y
[FAO/WHO] Food and Agriculture Organization/ World Health Organization. (2010). Joint FAO/WHO Expert Committee on Food Additives. http://www.fao.org/ag/agn/agns/jecfa_index_en.aspandhttp://www.who.int/ipcs/food/jecfa/en/index.html.
Fretes, C. C., Kakisina, P., & Rumahlatu, D. (2020). Concentration of heavy metal Hg, Au, and Fe in sediments, water, and tissue damage of golden sea cucumber Stichopus herrmanni (Semper, 1868) (Holothuroidea; Stichopodidae) in Kayeli Bay, Indonesia. Acta Aquatica Turcica, 16(1), 113-123. https://doi.org/10.22392/actaquatr.603602
Jadaa, W. & Mohammed, H. (2023). Heavy metals – Definition, natural and anthropogenic sources of releasing into ecosystems, toxicity, and removal methods – An overview study. Journal of Ecological Engineering, 24(6), 249–271. https://doi.org/10.12911/22998993/162955
Kim, J. H., & Kang, J. C. (2016). The toxic effects on the stress and immune responses in juvenile rockfish, Sebastes schlegelii exposed to hexavalent chromium. Environmental Toxicology and Pharmacology, 43, 128-133.
Kosker, A. R., Gundogdu, S., Ayas, D., & Bakan, M. (2022). Metal levels of processed ready-to-eat stuffed mussels sold in Turkey: Health risk estimation. Journal of Food Composition and Analysis, 106, 104326. https://doi.org/10.1016/j.jfca.2021.104326
Lin, P., Nan, F. H., & Ling, M. P. (2021). Dietary exposure of the Taiwan population to mercury content in various seafood assessed by a total diet study. International Journal of Environmental Research and Public Health, 18(22), 12227. https://doi.org/10.3390/ijerph182212227
Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. B., Nainu, F., Khusro, A., Idris, A. M., Khandaker, M. U., Osman, H., Alhumaydhi, F. A., & Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University–Science, 34, 101865. https://doi.org/10.1016/j.jksus.2022.101865
Magalhaes, D. D. P., Marques, M. R. D. C., Baptista, D. F., & Buss, D. F. (2015). Metal bioavailability and toxicity in freshwaters. Environmental Chemistry Letters, 13(1), 69-87.
Ogata, R. (2023). Three-year monitoring of the efficacy and improvement of the most popular arsenic removal filter in Nepal. Groundwater for Sustainable Development, 23, 101013. https://doi.org/10.1016/j.gsd.2023.101013
Oloruntoba, E., Gurusa, O., Omokhodion, F., Fobil, J., Basu, N., Arko-Mensah, J., & Robin, T. (2021). Spatial distribution of heavy metals and pollution of environmental media around a used lead-acid battery recycling center in Ibadan, Nigeria. Journal of Health and Pollution, 11(29), 1-18 https://doi.org/10.5696/2156-9614-11.29.210304
Olujimi, O., Ajakore, S., Abuganloye, D., Arowolo, T., Steiner, O., Goessler, W., & Towolawi, T. (2023). Levels of toxic and trace metals in the breast milk of lactating mothers in Abeokuta, Ogun State, Nigeria. Toxicology Reports, 11, 168–173. https://doi.org/10.1016/j.toxrep.2023.08.001
Rengaraj, S., Kim, Y., Joo, K.C., & Yi, J. (2004). Removal of copper from aqueous solution by aminated and protonated mesoporous aluminas: kinetics and equilibrium. Journal of Colloid and Interface Science, 273(1), 14-21. https://doi.org/10.1016/j.jcis.2004.01.007
Riani, E., Cordova, M. R., Arifin, Z. (2018). Heavy metal pollution and its relation to the malformation of green mussels cultured in Muara Kamal waters, Jakarta Bay, Indonesia. Marine Pollution Bulletin, 133, 664–670
Riani, E., Butet, N. A., Ansori, M., & Cordova, M. R. (2024). Impact of heavy metal pollution on the use of fishing pond land, a former site of used battery smelting. Global Journal of Environmental Science and Management, 10(4), 1655-1674.
Singh, P., Granberg, C. F., Harris, P. C., Lieske, J. C., Licht, J. H., Weiss, A., & Milliner, D. S. (2021). Primary hyperoxaluria type 3 can also result in kidney failure: A case report. American Journal of Kidney Diseases, 79(1), 125-128. https://doi.org/10.1053/j.ajkd.2021.05.016
Song, B., Lei, M., Chen, T., Zheng, Y., Xie, Y., Li, X., & Gao, D. (2009). Assessing the health risk of heavy metals in vegetables to the general population in Beijing, China. Journal of Environmental Sciences, 21(12), 1702–1709. https://doi.org/10.1016/S1001-0742(08)62476-6.
Suseno, D., & Razari, I. (2023). Identifikasi kandungan ikan tenggiri (Scomberomorus commerson) dan ikan sapu-sapu (Pterygoplichthys sp.) pada otak-otak. Jurnal Pengolahan Hasil Perikanan Indonesia, 26(2), 191-205. http://dx.doi.org/ 10.17844/jphpi.v26i2.45368
Türkmen, M., Türkmen, A., Tepe, Y., Ateş, A., & Gökkuş, K. (2008). Determination of metal contaminations in sea foods from Marmara, Aegean and Mediterranean seas: Twelve fish species. Food Chemistry, 108(2), 794–800. https://doi.org/10.1016/j.foodchem.2007.11.025
Ullah, A. K. M. A., Maksud, M. A., Khan, S. R., Lutfa, L. N., & Quraishi, S. B. (2017). Dietary intake of heavy metals from eight highly consumed species of cultured fish and possible human health risk implications in Bangladesh. Toxicology Reports, 4, 574–579. https://doi.org/10.1016/j.toxrep.2017.10.002
USEPA. (2014). Integrated Risk Information System (IRIS) Assessments. IRIS US EPA. Washington, DC. https://iris.epa.gov/AtoZ/?list_type=alpha
Utari, S. P. S. D., Astiana, I., Ginting, E. K., & Pradnyaswari, N. M. R. (2023). Pengujian mutu organoleptik dan logam berat merkuri, timbel, kadmium ikan tuna bentuk steik di Denpasar. Jurnal Pengolahan Hasil Perikanan Indonesia, 26(2), 271-279. http://dx.doi.org/10.17844/jphpi.v26i2.44430
Wagh, M. S., Osborne, W. J., & Sivarajan, S. (2023). Toxicity assessment of lead, nickel and cadmium on zebra fish augmented with Bacillus xiamenensis VITMSJ3: An insight on the defense mechanism against oxidative stress due to heavy metals. Food and Chemical Toxicology, 177, 113830. https://doi.org/10.1016/j.fct.2023.113830
Wang, H., Miao, D., Yu, Y., Zhang, Z., Zhu, Y., & Wang, Q. (2023). PVA/PAA/DMTD electrospun nanofibrous membrane for the selective adsorption of Pb(II) ions in liquid foods. iScience, 27(1), 108737. https://doi.org/10.1016/j.isci.2023.108737
Wasisto, N. H., Trilaksani, W., & Setyaningsih, I. (2022). Penilaian risiko semikuantitatif logam berat pada ikan salmon di Jabodetabek. Jurnal Pengolahan Hasil Perikanan Indonesia, 25(2), 244-252.
Wiharja. (2004). Kajian teknologi daur ulang timah dari aki bekas yang ramah lingkungan. Jurnal Teknologi Lingkungan, 5(1), 69-74.
Yap, C. K., Cheng, W. H., Karami, A., & Ismail, A. (2016). Health risk assessments of heavy metal exposure via consumption of marine mussels collected from anthropogenic sites. Science of The Total Environment, 553, 285–296. https://doi.org/10.1016/j.scitotenv.2016.02.092.
Zeng, X., Huo, X., Xu, X., Liu, D., & Wu, W. (2020). E-waste lead exposure and children’s health in China. Science of The Total Environment, 734(2020), 139286 https://doi.org/10.1016/j.scitotenv.2020.139286
Zhang, D., Liu, X., Ma, J., Yang, H., Zhang, W., & Li, C. (2019). Genotype Differences and Glutathione Metabolism Response in Wheat Exposed to Copper. Environmental and Experiment Botany, 157(2019), 250-259 https://doi.org/10.1016/j.envexpbot.2018.06.032
Zhao, T., Chae, S., Choi, Y. (2024). A review on recycling of waste lead-acid batteries. Journal of Physics: Conference Series, 2738, 012019. https://doi.org/10.1088/1742-6596/2738/1/012019
Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M., & Anjum, M.Z. (2019). Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management, 250, 109557. https://doi.org/10.1016/j.jenvman.2019.109557
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.






