Application of crude bacteriocins based on LC₅₀ values to prolong the shelf life of white shrimp
Aplikasi bakteriosin kasar berdasarkan nilai LC₅₀ untuk memperpanjang daya simpan udang putih
DOI:
https://doi.org/10.17844/sqp7y403Keywords:
food safety, microbe, natural preservative, probit analysis, TPCAbstract
Fishery products, including white shrimp, are highly perishable due to microbial contamination during postharvest handling. To address this, natural preservatives, such as bacteriocins, which are antimicrobial compounds produced by bacteria, including those from fermented shrimp paste, are being explored. This study aimed to evaluate the toxicity and preservative potential of three bacteriocin samples (TRS1, TRS2, and TRS3) using a 24-hour LC₅₀ test on Artemia sp. and antibacterial activity based on total plate count (TPC) in shrimp during storage. A completely randomized design (CRD) was used. Toxicity levels were assessed using probit analysis with log-linear regression to determine LC₅₀ values, and TPC was measured at 3-hour intervals over 24 h. Data were analyzed using the Kruskal-Wallis test and Dunn’s post-hoc test. TRS1 exhibited the highest toxicity, with an LC₅₀ of 0.22 µL/mL, followed by TRS3 (2.48 µL/mL) and TRS2 (4.40 µL/mL). Despite its higher toxicity, TRS1, along with TRS2, effectively suppressed microbial growth in shrimp, maintaining TPC values below the Indonesian National Standard (5×10⁵ CFU/g) throughout 24 h. In contrast, TRS3 maintained TPC below the threshold only up to 12 h, with counts nearing control levels (8.0×10⁶ CFU/g) by 24 h. TRS1 and TRS2 treatments initially showed fluctuating TPC patterns, followed by a sharp decline, possibly due to delayed bacteriocin activation and microbial adaptation; however, the exact reason remains unclear. Overall, TRS1 and TRS2 exhibited strong potential as natural preservatives for extending the shelf life of fresh white shrimp by effectively controlling bacterial growth during storage.
References
Akinsemolu, A. A., & Onyeaka, H. N. (2024). Microorganisms associated with food spoilage and foodborne diseases. In Food Safety and Quality in the Global South, 489-531. https://doi.org/10.1007/978-981-97-2428-4_16
Amábile-Cuevas, C. F., & Lund-Zaina, S. (2024). Non-canonical aspects of antibiotics and antibiotic resistance. Antibiotics, 13(6), 565. https://doi.org/10.3390/antibiotics13060565
Banerji, R., Karkee, A., & Saroj, S. D. (2022). Bacteriocins against foodborne pathogens. Applied Biochemistry and Microbiology, 58(5), 518-539. https://doi.org/10.1134/S0003683822050052
Chai, K. F., Voo, A. Y. H., & Chen, W. N. (2020). Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3825-3885. https://doi.org/10.1111/1541-4337.12651
Chan, W., Shaughnessy, A. E., van den Berg, C. P., Garson, M. J., & Cheney, K. L. (2021). The validity of brine shrimp (Artemia sp.) toxicity assays to assess the ecological function of marine natural products. Journal of Chemical Ecology, 47(10), 834-846. https://doi.org/10.1007/s10886-021-01264-z
Das, J., & Mishra, H. N. (2023). A comprehensive review of the spoilage of shrimp and advances in various indicators/sensors for shrimp spoilage monitoring. Food Research International, 173, 113270. https://doi.org/10.1016/j.foodres.2023.113270
de Almeida, M. C., Machado, M. R., Costa, G. G., de Oliveira, G. A. R., Nunes, H. F., Maciel Costa Veloso, D. F., Ishizawa, T. A., Pereira, J., & Ferreira de Oliveira, T. (2023). Influence of different concentrations of plasticizer diethyl phthalate (DEP) on toxicity of Lactuca sativa seeds, Artemia salina and Zebrafish. Heliyon, 9(9). e18855. https://doi.org/10.1016/j.heliyon.2023.e18855
Elayaraja, S., Annamalai, N., Mayavu, P., & Balasubramanian, T. (2014). Production, purification and characterization of bacteriocin from Lactobacillus murinus AU06 and its broad antibacterial spectrum. Asian Pacific journal of tropical biomedicine, 4, S305-S311. https://doi.org/10.12980/APJTB.4.2014C537
Feng, L., Tang, N., Liu, R., Gong, M., Wang, Z., Guo, Y., Wang, Y., Zhang, Y., & Chang, M. (2021). The relationship between flavor formation, lipid metabolism, and microorganisms in fermented fish products. Food & Function, 12(13), 5685-5702. https://doi.org/10.1039/D1FO00692D
Gökoğlu, N. (2021). Crustacean shellfish. Shellfish processing and preservation, 7-127. https://10.1007/978-3-030-60303-8
Herlina, V. T., & Setiarto, R. H. B. (2024). Terasi, exploring the Indonesian ethnic fermented shrimp paste. Journal of Ethnic Foods, 11(1), 7. https://doi.org/10.1186/s42779-024-00222-w
Hernández-González, J. C., Martínez-Tapia, A., Lazcano-Hernández, G., García-Pérez, B. E., & Castrejón-Jiménez, N. S. (2021). Bacteriocins from lactic acid bacteria. A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals, 11(4), 979. https://doi.org/10.3390/ani11040979
Hoover DG, Steenson LR. 2014. Bacteriocins of Lactic Acid Bacteria. Academic Press, Cambridge, Massachusetts.
Jatmiko, Y.D., Melianti, R.G., & Prihanto, A.A. (2025). Detection and molecular identification of Salmonella spp. in traditional shrimp paste (terasi): insights from multiplex PCR and 16S rDNA sequencing. Jurnal Pengolahan Hasil Perikanan Indonesia, 28(4), 378-391. http://dx.doi.org/10.17844/jphpi.v28i4.62964
Kalairaj, A., Rajendran, S., Karthikeyan, R., Panda, R. C., & Senthilvelan, T. (2024). A comprehensive review on preparation of silver nanoparticles from a bacteriocin for the natural preservation of food products. Applied Biochemistry and Biotechnology, 1-34. https://doi.org/10.1007/s12010-024-05122-y
Kobayashi, T., Agustini, T. W., Ibrahim, R., Kamei, K., Kondo, A., Kajiwara, M., Ooka, Y., Nakamura, H., Terahara, T., & Imada, C. (2016). Production of bacteriocin by Virgibacillus salexigens isolated from “terasi”: a traditionally fermented shrimp paste in Indonesia. World Journal of Microbiology and Biotechnology, 32(3), 47. https://doi.org/10.1007/s11274-015-1991-2
Kurnianto, M. A., Kusumaningrum, H. D., Lioe, H. N., & Chasanah, E. (2021). Partial purification and characterization of bacteriocin‐like inhibitory substances produced by Streptomyces sp. isolated from the gut of Chanos chanos. BioMed Research International, 1, 7190152. https://doi.org/10.1155/2021/7190152
Lahiri, D., Nag, M., Dutta, B., Sarkar, T., Pati, S., Basu, D., Abdul Kari, Z., Wei, L. S., Smaoui, S., Wen Goh, K., & Ray, R. R. (2022). Bacteriocin: anatural approach for food safety and food security. Frontiers in Bioengineering and Biotechnology, 10, 1005918. https://doi.org/10.3389/fbioe.2022.1005918
Luqman, M., Hassan, H. U., Ghaffar, R. A., Bilal, M., Kanwal, R., Raza, M. A., Kabir, M., Fadladdin, Y. A. J., Ali, A., Rafiq, N., Ibáñez-Arancibia, E., Ríos-Escalante, P. D. L., & Siddique, M. A. M. (2024). Post-harvest bacterial contamination of fish, their assessment and control strategies. Brazilian Journal of Biology, 84, e282002. https://doi.org/10.1590/1519-6984.282002
Madoromae, H., Atipairin, A., Tayeh, M., & Lertcanawanichakul, M. (2025). Investigating the production and synergistic antibacterial activity of bacteriocin-like substance from Brevibacillus laterosporus SA-14 (TISTR 2453) for enhanced wound healing. Heliyon. 11(4), e42510. https://doi.org/10.1016/j.heliyon.2025.e42510
Makhlouf, F. Z., Bramki, A., Smati, M., Khaine, F., Merouane, F., & Barkat, M. (2024). Purification and characterization of plantaricin PQ12: A novel bacteriocin from Lactiplantibacillus plantarum isolated from fermented cucumbers, with inhibitory activity against foodborne pathogens. ACS Food Science & Technology, 4(12), 3088-3096. https://doi.org/10.1021/acsfoodscitech.4c00663
Mahmud, M. L., Islam, S., Biswas, S., Mortuza, M. G., Paul, G. K., Uddin, M. S., & Zaghloul, N.S. (2023). Klebsiella pneumoniae volatile organic compounds (VOCs) protect Artemia salina from fish pathogen Aeromonas sp.: a combined in vitro, in vivo, and in silico approach. Microorganisms, 11(1), 172. https://doi.org/10.3390/microorganisms11010172
Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E. J., & McLaughlin, J. L. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Planta medica, 45(05), 31-34.
Negash, A. W., & Tsehai, B. A. (2020). Current applications of bacteriocin. International Journal of Microbiology, 2020(1), 4374891. https://doi.org/10.1155/2020/4374891
Oh, S., Kim, S. H., Ko, Y., Sim, J. H., Kim, K. S., Lee, S. H., Park, S., & Kim, Y. J. (2006). Effect of bacteriocin produced by Lactococcus sp. HY 449 on skin-inflammatory bacteria. Food and chemical toxicology, 44(4), 552-559. https://doi.org/10.1016/j.fct.2005.08.030
Parada Fabián, J. C., Álvarez Contreras, A. K., Natividad Bonifacio, I., Hernández Robles, M. F., Vázquez Quiñones, C. R., Quiñones Ramírez, E. I., & Vázquez Salinas, C. (2025). Toward safer and sustainable food preservation: a comprehensive review of bacteriocins in the food industry. Bioscience Reports, 45(04), BSR20241594. https://doi.org/10.1042/BSR20241594
Pohan, D. J., Marantuan, R. S., & Djojosaputro, M. (2023). Toxicity test of strong drug using the BSLT (brine shrimp lethality test) method. International Journal of Health Sciences and Research, 13(2), 203-209. https://doi.org/10.52403/ijhsr.20230228
Raj, J., Chandra, M., Dogra, T. D., Pahuja, M., & Raina, A. (2013). Determination of median lethal dose of combination of endosulfan and cypermethrin in wistar rat. Toxicology international, 20(1), 1. https://doi.org/10.4103/0971-6580.111531
Sharma, K., Kaur, S., Singh, R., & Kumar, N. (2021). Classification and mechanism of bacteriocin induced cell death: a review: bacteriocin classification and their mode action. Journal of microbiology, biotechnology and food sciences, 11(3), e3733-e3733. https://doi.org/10.15414/jmbfs.3733
Silva, C. C., Silva, S. P., & Ribeiro, S. C. (2018). Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in microbiology, 9, 594. https://doi.org/10.3389/fmicb.2018.00594
Soltani, S., Hammami, R., Cotter, P. D., Rebuffat, S., Said, L. B., Gaudreau, H., Bédard, F., Biron, E., Drider, D., & Fliss, I. (2021). Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS microbiology reviews, 45(1), 039. https://doi.org/10.1093/femsre/fuaa039
Sukmawati, S., Metusalach, M., & Syahrul, S. (2025). Identification of bacteriocin-producing bacteria from shrimp paste using 16S rRNA gene method and assay for MIC of their bacteriocin. Biodiversitas Journal of Biological Diversity, 26(7), 3367-3377. https://doi.org/10.13057/biodiv/d260728
Sukmawati, S., Sipriyadi, S., Yunita, M., Dewi, N. K., & Noya, E. D. (2022). Analysis of bacteriocins of lactic acid bacteria isolated from fermentation of rebon shrimp (Acetes sp.) in South Sorong, Indonesia as antibacterial agents. Biodiversitas Journal of Biological Diversity, 23(7), 3852-3859. https://doi.org/10.13057/biodiv/d230763
Sumardianto, Azizi, M. Q., & Purnamayati, L. (2022). Karakteristik terasi udang rebon (Acetes sp.) dengan penambahan pewarna alami ubi jalar ungu (Ipomoea batatas L.) yang berbeda. Jurnal Pengolahan Hasil Perikanan Indonesia, 25(3), 494-503. http://dx.doi.org/10.17844/jphpi.v25i3.43432
Telhig, S., Ben Said, L., Zirah, S., Fliss, I., & Rebuffat, S. (2020). Bacteriocins to thwart bacterial resistance in gram negative bacteria. Frontiers in microbiology, 11, 586433. https://doi.org/10.3389/fmicb.2020.586433
Todorov, S. D., Popov, I., Weeks, R., & Chikindas, M. L. (2022). Use of bacteriocins and bacteriocinogenic beneficial organisms in food products: benefits, challenges, concerns. Foods, 11(19), 3145. https://doi.org/10.3390/foods11193145
USEPA. (2002). Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. US Environmental Protection Agency US EPA, Washington, DC, USA.
Whittle, K. J., & Howgate, P. (2002). Glossary of fish technology terms. Rome: Food and Agriculture Organization of the United Nations, 63.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sukmawati Sukmawati, Metusalach Metusalach, Syahrul Syahrul

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.






