Ekstraksi Polisakarida Ulvan dari Rumput Laut Ulva lactuca Berbantu Gelombang Ultrasonik pada Suhu Rendah

Ultrasonic Wave Assisted Extraction of Ulvan Polysaccharide from Ulva Seaweed at Low Temperature

Penulis

  • Wahyu Ramadhan Departemen Teknologi Hasil Perikanan, IPB University
  • Uju Uju Departemen Teknologi Hasil Perikanan, IPB University
  • Safrina Dyah Hardiningtyas Departemen Teknologi Hasil Perikanan, IPB University
  • Rizfi Fariz Pari Departemen Teknologi Hasil Perikanan, IPB University
  • Nurhayati Nurhayati Departemen Teknologi Hasil Perikanan, IPB University
  • Devani Sevica Departemen Teknologi Hasil Perikanan, IPB University

DOI:

https://doi.org/10.17844/jphpi.v25i1.40407

Kata Kunci:

ulva, ulvan, ultrasonikasi

Abstrak

Ulvan merupakan polisakarida bersulfat utama dari rumput laut Ulva yang memiliki aktivitas biologis penting. Umumnya ulvan diekstrak menggunakan suhu tinggi dan dengan rentang waktu yang lama, oleh karena itu diperlukan metode ekstraksi alternatif yang dapat menghasilkan ulvan yang memiliki kualitas yang baik namun tetap mendukung konsep efisiensi energi. Salah satu metode green extraction yang dapat mengurangi penggunaan pelarut organik dan energi yang tinggi selama ekstraksi adalah dengan bantuan gelombang ultrasonik. Tujuan penelitian ini adalah untuk menentukan waktu, suhu dan jenis pelarut dengan bantuan ultrasonik yang paling baik dalam menghasilkan rendemen dan karakteristik ulvan yang sesuai dibandingkan dengan ulvan yang diekstraksi dengan metode konvensional atau tanpa bantuan ultrasonikasi. Pada penelitian tahap awal digunakan kombinasi antara jenis pelarut (akuades, HCl dan NaOH) dengan kondisi ekstraksi suhu rendah (50, 60, dan 70℃) selama 45 dan 90 menit dengan bantuan ultrasonik. Rendemen tertinggi ulvan diperoleh dari ekstraksi menggunakan NaOH pada suhu 70℃ selama 90 menit dengan bantuan ultrasonik sebesar 16,90±0,45%. molekul dan viskositas ulvan yang dihasilkan dengan berbantu ultrasonik menunjukkan penurunan nilai dibandingkan dengan tanpa ultrasonikasi. Hasil Fourier-transform infrared spectroscopy mengkonfirmasi pita serapan grup sulfat yang merupakan residu gula rhamnose pada panjang gelombang 1125 cm-1 dan C-O-S pada 983 cm-1. Ulvan yang diekstrak dengan sonikasi menunjukkan kandungan sulfat 39, 58 dan 53% untuk masing- masing pelarut akuades, HCl dan NaOH. Perlakuan ultrasonikasi memberikan pengaruh pada kandungan sulfat 2-14% lebih tinggi dibandingkan dengan sulfat yang dihasilkan dari metode konvensional.

Referensi

Alves A, Sousa RA, Reis RL. 2013. A practical perspective on ulvan extracted from green algae. Journal of Applied Phycology. 25(3): 407–424.

[AOAC] Association of Official Analytical Chemists. 1995. Official Method of Analysis of The Association of Official Analytical of Chemist. Virginia (US): The Association of Official Analytical Chemist, Inc.

[BSN] Badan Standardisasi Nasional. 2010. Penentuan kadar air pada produk perikanan SNI 01-2354.2-2010. Jakarta (ID): Badan Standardisasi Nasional.

Chemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M. 2017. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. Ultrasonics Sonochemistry, 34(1): 540-560.

de Carvalho MM, Noseda MD, Dallagnol JCC, Ferreira LG, Ducatti DRB, Gonçalves AG, de Freitas RA, Duarte MER. 2020. Conformational analysis of ulvans from Ulva fasciata and their anticoagulant polycarboxylic derivatives. International Journal of Biological Macromolecules.162(25): 599-608.

El Azm NA, Fleita D, Rifaat D, Mpingirika EZ, Amleh A, El-Sayed MMH. 2019. Production of bioactive compounds from the sulfated polysaccharides extracts of Ulva lactuca: Post-extraction enzymatic hydrolysis followed by ion-exchange chromatographic fractionation. Molecules. 24(11): 2132.

[FAO] Food and Agriculture Organization. 2014. FAO JECFA Monographs 16. Specifications: Carrageenan. Rome (IT): Food and Agriculture Organization.

Guedes ÉAC, da Silva TG Aguiar JS, de Barros LD, Pinotti LM, Sant’Ana AEG. 2013. Cytotoxic activity of marine algae against cancerous cells. Revista Brasileira de Farmacognosia. 23(4): 668–673.

Hernández-Garibay E, Zertuche-González JA, Pacheco-Ruíz I. 2011. Isolation and chemical characterization of algal polysaccharides from the green seaweed Ulva clathrata (Roth) C. Agardh. Journal of Applied Phycology. 23(3):537–542.

Houwink R. 1940. Relationship between viscosimetric and osmotically determined degrees of polymerization in high polymers. Journal für Praktische Chemie. 157: 15-18.

Huggins ML. 1942. The viscosity of dilute solutions of long chain molecules. IV. Dependence on concentration. Journal of the American Chemical Society. 64(11): 2716-2718

Huiminin Q, Sun Y. 2015. Antioxidant activity of high sulfate content derivative of ulvan in hyperlipidemic rats. International Journal of Biological Macromolecules. 76: 326-9.

Jiang N, Li B, Wang X, Xu X, Liu X, Li W, Chang X, Li H, Qi H. 2020. The antioxidant and antihyperlipidemic activities of phosphorylated polysaccharide from Ulva pertusa. International Journal of Biological Macromolecules. 145(5): 1059–1065.

Kadam SU, Tiwari BK, Smyth TJ, O’Donnell CP. 2015. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrasonics Sonochemistry, 23(3): 308-316.

Kidgell JT, Magnusson M, de Nys R, Glasson CRK. 2019. Ulvan: A systematic review of extraction, composition and function. Algal Research, 39(3): 1-20.

Koga AY, Pereira AV, Lipinski LCO. 2018. Evaluation of wound healing effect of alginate films containing Aloe vera (Aloe barbadensis Miller) gel. Journal of Biomaterials Applications. 32(9):1212–1221.

Klongklaew N, Praiboon J, Tamtin M, Srisapoome P. 2020. Antibacterial and antiviral activities of local Thai green macroalgae crude extracts in pacific white shrimp (Litopenaeus vannamei). Marine Drugs.18(3): 140.

Lakshmi DS, Sankaranarayanan S, Gajaria TK, Li G, Kujawski W, Kujawa J, Navia R. 2020. A short review on the valorization of green seaweeds and ulvan: feedstock for chemicals and biomaterials. Biomolecules. 10(7): 991.

Liu XY, Liu D, Lin GP, Wu YJ, Gao LY, Ai C, Huang YF, Wang MF, El-Seedi HR, Chen XH. 2019. Anti-ageing and antioxidant effects of sulfate oligosaccharides from green algae Ulva lactuca and Enteromorpha prolifera in SAMP8 mice. International Journal of Biological Macromolecules. 139(23): 342–351.

Mo’o FRC, Wilar G, Devkota HP, Wathoni N. 2020. Ulvan, a polysaccharide from macroalga ulva sp.: A review of chemistry, biological activities and potential for food and biomedical applications. Applied Sciences. 10(16), 5488:1-21.

Montes L, Gisbert M, Hinojosa I, SineiroJ, Moreira R. 2021. Impact of drying on the sodium alginate obtained after polyphenols ultrasound-assisted extraction from Ascophyllum nodosum seaweeds. Carbohydrate Polymers. 272(18): 118455.

Peasura N, Laohakunjit N, Kerdchoechuen O, Vongsawasdi P, Chao LK. 2016. Assessment of biochemical and immunomodulatory activity of sulphated polysaccharides from Ulva intestinalis. International Journal of Biological Macromolecules. 91(10): 269–277.

Robic A, Gaillard C, Sassi JF, Lerat Y, Lahaye M. 2009a. Ultrastructure of ulvan: a polysaccharide from green seaweeds. Biopolymers. 91(8): 652-64.

Robic A, Rondeau-Mouro C, Sassi J, Lerat Y, Lahaye M. 2009b. Structure and interactions of ulvan in the cell wall of the marine green algae Ulva rotundata (Ulvales, Chlorophyceae). Carbohydrate Polymer. 77(12): 206–216.

Sanchez JAV, Motohiro T, Takaomi K. 2013. Ultrasound effect use as external stimulus for viscosity change of aqueous carrageenans. Ultrasonics Sonochemistry. 20(4): 1081-1091.

Tian H, Yin X, Zeng Q, Zhu L, Chen J. 2015. Isolation, structure, and surfactant properties of polysaccharides from Ulva lactuca L. from South China Sea. International Journal of Biological Macromolecules. 79(17): 577–582.

Uju, Santoso J, Ramadhan W, Abrory MF. 2018. Ekstraksi native agar dari rumput laut Gracilaria sp. dengan akselerasi ultrasonikasi pada suhu rendah. Jurnal Pengolahan Hasil Perikanan Indonesia. 21(3): 414-422

Venkatesan J, Lowe B, Anil S, Manivasagan P, Kheraif AAA, Kang KH, Kim SK. 2015. Seaweed polysaccharides and their potential biomedical applications. Starch – Stärke. 67(5-6): 381–390.

Wahlström N, Nylander F, Malmhäll-Bah E, Sjövold K, Edlund U, Westman G, Albers E. 2020. Composition and structure of cell wall ulvans recovered from Ulva spp. along the Swedish west coast. Carbohydrate Polymers. 232(7): 115852.

Wen C, Zhang J, Zhang H, Dzah CS, Zandile M, Duan Y, Ma H, Luo X. 2018. Advances in ultrasound assisted extraction of bioactive compounds from cash crops – A review, Ultrasonics Sonochemistry. 48(10): 538-549.

Yang L, Zhang LM. 2009. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydrate Polymer. 76(3): 349–361.

Youssouf L, Lallemand L, Giraud P, Soulé F, Bhaw-Luximon A, Meilhac O, D’Hellencourt CL, Jhurry D, Couprie J. 2017. Ultrasound-assisted extraction and structural characterization by NMR of alginates and carrageenans from seaweeds. Carbohydrate Polymers. 166(11): 55-63.

Unduhan

Diterbitkan

2022-04-13

Cara Mengutip

Ramadhan, W., Uju, U., Hardiningtyas, S. D., Pari, R. F., Nurhayati, N., & Sevica, D. (2022). Ekstraksi Polisakarida Ulvan dari Rumput Laut Ulva lactuca Berbantu Gelombang Ultrasonik pada Suhu Rendah : Ultrasonic Wave Assisted Extraction of Ulvan Polysaccharide from Ulva Seaweed at Low Temperature. Jurnal Pengolahan Hasil Perikanan Indonesia, 25(1), 132-142. https://doi.org/10.17844/jphpi.v25i1.40407