CONDITION FACTOR AND SIZE VARIATION OF CATFISH FRY REARING IN A SUPER-INTENSIVE UFBs-RAS SYSTEM
KONDISI FAKTOR DAN KERAGAMAN UKURAN BENIH IKAN LELE PADA PEMELIHARAAN SUPER INTENSIF DALAM SISTEM UFBs-RAS
DOI:
https://doi.org/10.24319/jtpk.16.351-359Keywords:
akuakultur super intensif, ikan lele, kualitas air, padat tebar, UFBs-RASAbstract
Catfish (Clarias gariepinus) is one of the leading aquaculture commodities in Indonesia, with a production volume reaching 1.01 million tons, accounting for approximately 15% of the national aquaculture output in 2020. The availability of high-quality fry is crucial for the sustainability of catfish farming. This study aims to evaluate the effect of high stocking densities on survival rate, condition factor, and size variation of catfish fry reared in UFBs-RAS. This research was conducted at PUI-PT Nano Powder Functional Universitas Padjadjaran (Jatinangor) from October to November 2023. The study tested catfish fry with lengths of 3–4 cm and weights of 1.2–1.4 g with four densities (10 fish/L, 15 fish/L, 20 fish/L, 25 fish/L). The results indicated that stocking density did not significantly affect the survival rate (P>0.05), but it did have a significant effect on length and weight variation (P<0.05). The condition factor did not show significant differences (P>0.05) between stocking density treatments. Overall, a density of 25 fish/L yielded the best performance within the UFBs-RAS. Therefore, this density is recommended as the optimal stocking rate for catfish fry rearing in this system. These findings suggest that the application of the UFBs-RAS system provides a strategic solution for the aquaculture industry to enhance the efficiency of catfish fry rearing at high stocking densities while maintaining optimal water quality and growth performance, thereby supporting productivity and sustainability in intensive aquaculture systems.
Downloads
References
Adharani N, Soewardi K, Syakti AD, Hariyadi S. 2016. Manajemen Kualitas Air dengan Teknologi Bioflok: Studi Kasus Pemeliharaan Ikan Lele (Clarias sp.). Jurnal Ilmu Pertanian Indonesia. 21(1): 35–40. DOI: https://doi.org/10.18343/jipi.21.1.35.
Ahmed N, Thompson S, Glaser M. 2019. Global Aquaculture Productivity, Environmental Sustainability, and Climate Change Adaptability. Environmental Management. 63(2): 159–172. DOI: https://doi.org/10.1007/s00267-018-1117-3.
Aidos L, Cafiso A, Serra V, Vasconi M, Bertotto D, Bazzochhi C, Radaelli G, Di Giancamillo A. 2020. How Different Stocking Densities Affect Growth and Stress Status of Acipenser baerii Early Stage Larvae. Animals. 10(8): 1–15. DOI: https://doi.org/10.3390/ani10081289.
Almazán-Rueda P, Schrama JW, Verreth JAJ. 2004. Behavioural Responses Under Different Feeding Methods and Light Regimes of the African Catfish (Clarias gariepinus) Juveniles. Aquaculture. 231(1–4): 347–359. DOI: https//doi.org/10.1016/j.aquaculture.2003.11.016.
Badan Standardisasi Nasional. 2014. SNI 6484.4-2014. Ikan Lele Dumbo (Clarias sp). Jakarta
Barasa JE, Ouma DF. 2024. Towards Sustainability in Seed Supply for African Catfish, Clarias gariepinus (Burchell 1822) Culture in Kenya: Lessons from Asian Catfishes Industry. Aquaculture Research. 2024(1): 1–21. DOI: https://doi.org/10.1155/2025/1341858.
Barbosa JM, Brugiolo SSS, Carolsfeld J, Leitao SS. 2006. Heterogeneous Growth in Fingerlings of the Nile Tilapia Oreochromis niloticus: Effects of Density and Initial Size Variability. Brazilian Journal of Biology. 66(2a): 537–541. DOI: https://doi.org/10.1590/S1519-69842006000300020.
Barcellos LJG, Volpato GL, Barreto RE, Cordebella I, Ferreira D. 2011. Chemical Communication of Handling Stress in Fish. Physiology & Behaviour. 103(3–4): 372–375. DOI: https://doi.org/10.1016/j.physbeh.2011.03.009.
Baßmann B, Hahn L, Rebl A, Wenzel LC, Hildebrand MC, Verleih M, Palm HW. 2023. Effects of Stocking Density, Size, and External Stress on Growth and Welfare of African Catfish (Clarias gariepinus Burchell, 1822) in a Commercial RAS. Fishes. 8(2): 74. DOI: https://doi.org/10.3390/fishes8020074.
Bernardi F, Zadinelo IV, Alves HJ, Meurer F, Dos Santos LD. 2018. Chitins and Chitosans for the Removal of Total Ammonia of Aquaculture Effluents. Aquaculture. 483: 203–212. DOI: https://doi.org/10.1016/j.aquaculture.2017.10.027.
Burggren WW, Arriaga-Bernal JC, Mendez-Arzate PM, Mendez-Sanchez JF. 2019. Metabolic Physiology of the Mayan Cichlid Fish (Mayaheros uropthalmus): Re-examination of Classification as an Oxyconformer. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 237: 110538. DOI: https://doi.org/10.1016/j.cbpa.2019.110538.
Carbonara P, Dioguardi M, Cammarata M, Zupa W, Vazzana M, Spedicato MT. 2019. Basic Knowledge of Social Hierarchies and Physiological Profile of Reared Sea Bass Dicentarchus labrax (L.). PLoS ONE. 14(1): 1–16. DOI: https//doi.org/10.1371/journal.pone.0208688.
Diao W, Jia R, Hou Y, Dong Y, Li B, Zhu J. 2023. Effects of Stocking Density on the Growth Performance, Physiological Parameters, Antioxidant Status, and Lipid Metabolism of Pelteobagrus fulvidraco in the Integrated Rice-Fish Farming System. Animals. 13(11): 1721. DOI: https://doi.org/10.3390/ani13111721.
Espinoza-Ramos LA, Quispe-Mayta JM, Chili-Layme V, Nande M. 2022. Effect of Stocking Density on Growth, Feed Efficiency, and Survival in Peruvian Grunt Anisotremus scapularis (Tschudi 1846): From Fingerlings to Juvenile. Aquaculture Journal. 2(1): 13–22. DOI: https://doi.org/10.3390/aquacj2010002.
Fulton TW. 1911. The Sovereignty of the Sea. Edinburgh and London (GB): William Blackwood and Sons.S
Goddard S. 1996. Feed Management in Intensive Aquaculture. New York (US): Chapman and Hall.
Indriastuti CE, Ratnawati B, Budiharto IW. 2022. Survival and Growth Performance the Catfish Clarias gariepinus in High Density Nurseries Using Recirculating Aquaculture System (RAS). E3S Web of Conferences. 348: 1–9. DOI: https://doi.org/10.1051/E3sconf/202234800013.
Jewel MAS, Ara J, Haque MA, Hossain MA, Noor NM, Das SK. 2023. Effect of Stocking Density on the Growth, Body Composition, and Blood Parameters of Cage-reared Gangetic Mytus Catfish (Mystus cavasius). Aquaculture Reports. 28: 101428. DOI: https://doi.org/10.1016/j.aqrep.2022.101428.
Kelana PP, Subhan U, Suryadi IBB, Haris RBK. 2021. Studi Kesesuaian Kualitas Air untuk Budidaya Ikan Lele Dumbo (Clarias gariepinus) di Kampung Lauk Kabupaten Bandung. Aurelia Journal: Authentic Research of Global Fisheries Applications Journal. 2(4): 159–164. DOI: http://dx.doi.org/10.15578/aj.v2i2.9887.
Kesuma BW, Budiyanto B, Brata B. 2019. Efektifitas Pemberian Probiotik dalam Pakan terhadap Kualitas Air dan Laju Pertumbuhan pada Pemeliharaan Lele Sangkuriang (Clarias gariepinus) Sistem Terpal. Naturalis: Jurnal Penelitian Pengelolaan Sumber Daya Alam dan Lingkungan. 8(2): 21–27. DOI: https://doi.org/10.31186/Naturalis.8.2.9206.
[KKP] Kementerian Kelautan dan Perikanan Republik Indonesia. 2020. Produksi Perikanan Budidaya Menurut Komoditas Utama Tahun 2020. https://portaldata.kkp.go.id/portals/data-statistik/prod-ikan/tbl-statis/d/53. [10 Januari 2025].
Kordi K, Ghufron MH. 2000. Budidaya Ikan Nila. Semarang (ID): Dahara Prize.
Kusumawati AA, Suprapto D, Haeruddin H. 2018. Pengaruh Ekoenzim terhadap Kualitas Air dalam Pembesaran Ikan Lele (Clarias gariapinus). Management of Aquatic Resources Journal (MAQUARES). 7(4): 307–314. DOI: https://doi.org/10.14710.Marj.V7i4.22564.
Li J, Huang K, Huang L, Hua Y, Yu K, Liu T. 2020. Effects of Dissolved Oxygen on the Growth Performance, Haematological Parameters, Antioxidant Responses, and Apoptosis of Juvenile GIFT (Oreochromis niloticus). Aquaculture Research. 51(8): 3079–3090. DOI: https://doi.org/10.1111/Are.14684.
Li L, Shen Y, Yang W, Xu X, Li J. 2021. Effect of Different Stocking Densities on Fish Growth Performance: A Meta-Analysis. Aquaculture. 544: 737152. DOI: https://doi.org/10.1016/j.aquaculture.2021.737152.
Marciano A, Tropea C, Greco LSL. 2018. Effect of Multiple Spawning on Female Reproductive Output and Offspring Quality in a Freshwater Caridean Shrimp with Direct Development. Invertebrate Biology. 137(1): 66–77. DOI: https://doi.org/10.1111/ivb.12206.
Martins CIM, Galhardo L, Noble C, Damsgård B, Spedicato MT, Zupa W, Beauchaud M, Kulczykowska E, Massabuau J, Carter T, et al. 2012. Behavioural Indicators of Welfare in Farmed Fish. Fish Physiology and Biochemistry. 38: 17–41 DOI: https://doi.org/10.1007/s10695-011-9518-8.
Nardocci G, Navarro C, Cortés PP, Imarai M, Montoya M, Valenzuela B, Jara P, Acuna-Castillo C, Fernandez R. 2014. Neuroendocrine Mechanisms for Immune System Regulation During Stress in Fish. Fish & Shellfish Immunology. 40(2): 531–538. DOI: https://doi.org/10.1016/j.fsi.2014.08.001.
Niklasson L, Sundh H, Fridell F, Taranger GL, Sundell K. 2011. Disturbance of the Intestinal Mucosal Immune System of Farmed Atlantic Salmon (Salmo salar), in Response to Long-Term Hypoxic Conditions. Fish & Shellfish Immunology. 31(6): 1072–1080. DOI: https://doi.org/10.1016/j.fsi.2011.09.011.
Olufeagba SO, Okomoda VT, Shuibu G. 2016. Embryogenesis and Early Growth of Pure Strains and Hybrids of Sharptooth Catfish Clarias gariepinus and Sampa Heterobranchus longifilis. North American Journal of Aquaculture. 78(4): 346–355. DOI: https://doi.org/10.1080/15222055.2016.1194926.
Perry RI, Hargreaves NB, Waddell BJ, Mackas DL. 1996. Spatial Variations in Feeding and Condition of Juvenile Pink and Chum Salmon off Vancouver Island, British Columbia. Fisheries Oceanography. 5(2): 73–88. DOI: https://doi.org/10.1111/j.1365-2419.1996.tb00107.x.
Qian X, Cui Y, Xie S, Lei W, Zhu X, Xiong B, Yang Y. 2002. Individual Variations in Growth, Food Intake and Activity in Juvenile Chinese Sturgeon Acipenser sinensis Gray. Journal of Applied Ichthyology. 18(4–6): 695–698. DOI: https://doi.org/10.1046/j.1439-0426.2002.00400.x.
Rosariawari F, Wahjudijanto I, Rachmanto TA. 2016. Peningkatakn Effektifitas Aerasi dengan Menggunakan Micro Bubble Generator (MBG). Envirotek: Jurnal Ilmiah Teknik Lingkungan. 8(2): 88–97.
Roy J, Terrier F, Marchand M, Herman A, Heraud C, Surget A, Lanuque A, Sandres F, Marandel L. 2021. Effects of Low Stocking Densities on Zootechnical Parameters and Physiological Responses of Rainbow Trout (Oncorhynchus mykiss) Juveniles. Biology. 10(10): 1040. DOI: https://doi.org/10.3390/biology10101040.
Schäfer N, Matoušek J, Rebl A, Stejskal V, Brunner RM, Goldammer T, Verleih M, Korytář T. 2021. Effects of Chronic Hypoxia on the Immune Status of Pikeperch (Sander lucioperca Linnaeus 1758). Biology. 10(7): 649. DOI: https://doi.org/10.3390/biology10070649.
Setyono BDH, Baihaqi LW, Marzuki M, Atmawinata LM, Fitria S, Affandi RI. 2023. Microbubble Technology to Improve Growth of Catfish (Clarias sp). Jurnal Penelitian Pendidikan IPA. 9(9): 7373–7382. DOI: https//doi.org/Jppipa.V9i9.3433.
Sherif AH, Soliman HA, Heba, Elgharib H. 2014. Negative Impacts of Un-ionized Ammonia (NH3) on Health Status of Cultured Oreochromis niloticus. Abbasa International Journal of Aquatic. 6(2): 319–347.
Silva VA, Trushenski J, Schwarz MH, Cavalli RO. 2020. Effects of Rearing Density on Growth, Physiological Responses and Flesh Quality in Juvenile Cobia (Rachycentron canadum). Journal of the World Aquaculture Society. 51(6): 1301–1312. DOI: https://doi.org/10.1111/jwas.12721.
Stickney RR. 2000. Encyclopedia of Aquaculture. Texas (US): A Wiley-Interscience Publication.
Subhan U, Iskandar, Zahidah, Joni IM. 2021. Detection of Reserve Oxygen Potential in the Present of Fine Bubbles and Its Ammonia Removal for Aquaculture Effluent. Materials Science Forum. 1044: 103–111. DOI: https://doi.org/10.4028/www.scientific.net/MSF.1044.103.
Sundari RS, Priyanto YA. 2017. Efisiensi Penggunaan Faktor-Faktor Produksi pada Teknologi Pendederan Ikan Lele (Clarias sp.) Sangkuriang. Jurnal Teknologi Perikanan dan Kelautan. 7(2): 199–206. DOI: https://doi.org/10.24319/jtpk.7.199-206.
Tanjung RRM, Zidni I, Iskandar, Junianto. 2019. Effect of Difference Filter Media on Recirculating Aquaculture System (RAS) on Tilapia (Oreochromis niloticus) Production Performance. World Scientific News. 118(13): 194–208.
Tibile RM, Sawant PB, Chadha NK, Lakra WS, Prakash C, Swain S, Bhagawati K. 2016. Effect of Stocking Density on Growth, Size Variation, Condition Index and Survival of Discuss, Symphysodon aequifasciatus Pellegrin, 1904. Turkish Journal of Fisheries and Aquatic Sciences. 16(2): 455–462. DOI: https://doi.org/10.4194/1303-2712-v16_2_25.
Ujjania N, Sharma LL, Balai VK. 2013. Length-Weight Relationship and Condition Factor of Indian Major Carp (Labeo rohita Ham, 1822) from Southern Rajasthan, India. Applied Biological Research. 15(2): 1–5.
Wang N, Hayward RS, Noltie DB. 1998. Variation in Food Consumption, Growth, and Growth Efficiency Among Juvenile Hybrid Sunfish Held Individually. Aquaculture. 167(1-2): 43–53. DOI: https://doi.org/10.1016/S0044-8486(98)00299-3.
Warwick EJ, Astuti JM, Hardjosubroto W. 1995. Pemuliaan Ternak. Yogyakarta (ID): Gadjah Mada University Press.
Xiao R, Wei Y, An D, Li D, Ta X, Wu Y, Ren Q. 2019. A Review on the Research Status and Development Trend of Equipment in Water Treatment Processes of Recirculating Aquaculture Systems. Reviews in Aquaculture. 11(3): 863–895. DOI: https://doi.org/10.1111/raq.12270.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Teknologi Perikanan dan Kelautan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This journal is published under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes.















