ESTIMATION OF MIXING AND TRANSFORMATION OF SOUTH PACIFIC WATER MASSES IN THE HALMAHERA SEA
ESTIMASI PERCAMPURAN DAN TRANSFORMASI MASSA AIR PASIFIK SELATAN DI LAUT HALMAHERA
DOI:
https://doi.org/10.24319/jtpk.16.440-452Keywords:
Halmahera Sea, South Pacific water mass, Thorpe analysis, turbulent mixingAbstract
The Halmahera Sea is part of the eastern pathway of Indonesian Throughflow and is a key area for water mass interaction and transformation. This study aims to estimate vertical mixing and analyze its implications for South Pacific water masses transformation in the Halmahera Sea. The data used are archived observational data from the National Research and Innovation Agency (BRIN), using CTD profilers and vertical current velocity measurements on February, 2021. Mixing estimation was using Thorpe analysis to calculate the turbulent kinetic energy dissipation rate (ε) and vertical eddy diffusivity (Kρ). Turbulent mixing areas were identified at depths of 50–300 m. The South Pacific water masses have a maximum salinity of 35.5 psu at the isopycnal σθ = 25.4, and a minimum salinity of 34.5 at the isopycnal σθ = 26.5. The Halmahera Sea near Obi Strait experiences a maximum salinity change at the isopycnal σθ = 25.5 with a value of 35.4 psu, while the minimum salinity at σθ = 26 is 34.8 psu. This layer (σθ = 24–26) exhibit a relatively high turbulent kinetic energy dissipation (10-6 W/kg) and vertical eddy diffusivity (10-3 m2/s) that describe the transport of South Pacific Subtropical Water (SPSW). The isopycnal σθ = 26–27 show a decrease in minimum salinity, with ε on the order of 10-7 W/kg and Kρ on the order of 10-3 m2/s in the middle and deep layers near Obi Strait, indicating mixing driven by shear instability associated with internal wave energy dissipation zones.
Downloads
References
Atmadipoera AS, Koch-Larrouy A, Madec G, Grelet J, Baurand F, Jaya I, Dadou I. 2022. Part I: Hydrological Properties within the Eastern Indonesian Throughflow Region during the INDOMIX Experiment. Deep-Sea Research Part I: Oceanographic Research Papers. 182: 103735. DOI: https://doi.org/10.1016/j.dsr.2022.103735.
Dillon TM. 1982. Vertical Overturns: A Comparison of Thorpe and Ozmidov Length Scales. Journal of Geophysical Research: Oceans. 87(C12): 9601–9613. DOI: https://doi.org/10.1029/jc087ic12p09601.
Feng M, Zhang N, Liu Q, Wijffels S. 2018. The Indonesian Throughflow, Its Variability and Centennial Change. Geoscience Letters. 5(3): 1–10. DOI: https://doi.org/10.1186/s40562-018-0102-2.
Galbraith PS, Kelley DE. 1996. Identifying Overturns in CTD Profiles. Journal of Atmospheric and Oceanic Technology. 13(3): 688–702. DOI: https://doi.org/10.1175/1520-0426(1996)013<0688:IOICP>2.0.CO;2.
Guo Y, Li Y, Yang D, Li Y, Wang F, Gao G. 2023. Water Sources of the Lombok, Ombai, and Timor Outflows of the Indonesian Throughflow. Frontiers in Marine Science. 10: 1–10. DOI: https://doi.org/10.3389/fmars.2023.1326048.
Hadikusumah H. 2010. Massa Air Subtropical di Perairan Hamahera. Jurnal Ilmu dan Teknologi Kelautan Tropis. 2(2): 92–108. DOI: https://doi.org/10.29244/jitkt.v2i2.7857.
Harsono G, Purwanto B, Wirasatriya A, Murtiana S, Agassi RN. 2023. Percampuran Vertikal Massa Air Lapisan Pertengahan Perairan Lifamatola pada Bulan Maret 2009. BULOMA: Buletin Oseanografi Marina. 12(3): 365–378. DOI: https://doi.org/10.14710/buloma.v12i3.56350.
Harsono G, Supartono S, Manurung D, Atmadipoera AS, Syamsudin F, Baskoro MS. 2014. Pergeseran Halmahera Eddy Kaitannya dengan Produktivitas Tangkapan Ikan Cakalang di Perairan Sekitarnya. Jurnal Teknologi Perikanan dan Kelautan. 5(2): 145–152. DOI: https://doi.org/10.24319/jtpk.5.145-152.
Ilahude AG, Gordon AL. 1996. Thermocline Stratification within the Indonesian Seas. Journal of Geophysical Research: Oceans. 101(C5): 12401–12409. DOI: https://doi.org/10.1029/95JC03798.
Iskandar MR, Purwandana A, Surinati D, Zheng W. 2021. Observed Features of the Water Masses in the Halmahera Sea in November 2016. Ilmu Kelautan: Indonesian Journal of Marine Sciences. 26(4): 225–236. DOI: https://doi.org/10.14710/ik.ijms.26.4.225-236.
Klymak JM, Legg S, Alford MH, Buijsman M, Pinkel R, Nash JD. 2012. The Direct Breaking of Internal Waves at Steep Topography. Oceanography. 25(2): 150–159. DOI: https://doi.org/10.5670/oceanog.2012.50.
Kunze E. 2017. Internal-Wave-Driven Mixing: Global Geography and Budgets. Journal of Physical Oceanography. 47(6): 1325–1345. DOI: https://doi.org/10.1175/JPO-D-16-0141.1.
Moum JN, Farmer DM, Smyth WD, Armi L, Vagle S. 2003. Structure and Generation of Turbulence at Interfaces Strained by Internal Solitary Waves Propagating Shoreward Over the Continental Shelf. Journal of Physical Oceanography. 33(10): 2093–2112. DOI: https://doi.org/10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2.
Nagai T, Hibiya T, Bouruet-Aubertot P. 2017. Nonhydrostatic Simulations of Tide-Induced Mixing in the Halmahera Sea: A Possible Role in the Transformation of the Indonesian Throughflow Waters. Journal of Geophysical Research: Oceans. 122(11): 8933–8943. DOI: https://doi.org/10.1002/2017JC013381.
Nash JD, Alford MH, Kunze E, Martini K, Kelly S. 2007. Hotspots of Deep Ocean Mixing on the Oregon Continental Slope. Geophysical Research Letters. 34(1): 1–6. DOI: https://doi.org/10.1029/2006GL028170.
Naulita Y, Hartanto MT, Purwandana A. 2014. Analisis Thorpe untuk Mengkaji Proses Percampuran Turbulen di Perairan Timur Kalimantan. Prosiding Seminar Hasil-Hasil Penelitian dan Pengabdian kepada Masyarakat, Institut Pertanian Bogor, 2–3 Desember 2014, Bogor, Indonesia. 363–376.
Naulita Y, Natih NMN, Nabil N. 2021. Turbulent Mixing Process in the Lombok Strait. 4th International Conference Marine Sciences (ICMS 2021), 24th-25th August 2021, Bogor, Indonesia. IOP Conference Series: Earth and Environmental Science. DOI: https://doi.org/10.1088/1755-1315/944/1/012067.
Ostrovsky L, Soustova I, Troitskaya Y, Gladskikh D. 2024. Evolution of Small-Scale Turbulence at Large Richardson Numbers. Nonlinear Processes in Geophysics. 31(2): 219–227. DOI: https://doi.org/10.5194/npg-31-219-2024.
Osborn TR. 1980. Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements. Journal of Physical Oceanography. 10(1): 83–89. DOI: https://doi.org/10.1175/1520-0485(1980)010<0083:eotlro>2.0.co;2.
Prasetyo W, Zheng W, Purwandana A, Wicaksono A, Kusmanto E, Surinati D, Priyono B, Triwibowo H, Utari PA, Wijayanti R, et al. 2024. Percampuran Vertikal Turbulen di Perairan Halmahera pada Bulan Oktober 2017. Positron: Berkala Ilmiah Fisika. 14(2): 129–139. DOI: https://doi.org/10.26418/positron.v14i2.79035.
Prihatiningsih I, Jaya I, Atmadipoera AS, Zuraida R. 2019. Turbulent Mixing of Water Masses in Selayar Slope - Southern Makassar Strait. The 5th International Symposium on LAPAN-IPB Satellite for Food Security and Environmental Monitoring 2018 (LISAT-FSEM 2018), 6–7 November 2018, IPB International Convention Center, Bogor, Indonesia. IOP Conference Series: Earth and Environmental Science. DOI: https://doi.org/10.1088/1755-1315/284/1/012033.
Purwandana A. 2013. Kajian Percampuran Vertikal Massa Air dan Manfaatnya. Oseana. 38(3): 9–22.
Purwandana A, Cuypers Y. 2023. Characteristics of Internal Solitary Waves in the Maluku Sea, Indonesia. Oceanologia. 65(2): 333–342. DOI: https://doi.org/10.1016/j.oceano.2022.07.008.
Purwandana A, Purba M, Atmadipoera AS. 2014. Distribusi Percampuran Turbulen di Perairan Selat Alor (Distribution of Turbulence Mixing in Alor Strait). Ilmu Kelautan: Indonesian Journal of Marine Sciences. 19(1): 43–54. DOI: https://doi.org/10.14710/ik.ijms.19.1.43-54.
Sprintall J, Gordon AL, Wijffels SE, Feng M, Hu S, Koch-Larrouy A, Phillips H, Nugroho D, Napitu A, Pujiana K, et al. 2019. Detecting Change in the Indonesian Seas. Frontiers in Marine Science. 6: 1–24. DOI: https://doi.org/10.3389/fmars.2019.00257.
St. Laurent LC, Simmons HL, Jayne SR. 2002. Estimating Tidally Driven Mixing in the Deep Ocean. Geophysical Research Letters. 29(23): 21-(1–4). DOI: https://doi.org/10.1029/2002GL015633.
Stansfield K, Garrett C, Dewey R. 2001. Probability Distribution of the Thorpe Displacement within Overturns in Juan de Fuca Strait. Journal of Physical Oceanography. 31(12): 3421–3434. DOI: https://doi.org/10.1175/1520-0485(2001)031<3421:TPDOTT>2.0.CO;2.
Wattimena MC, Atmadipoera AS, Purba M, Nurjaya IW, Syamsudin F. 2018. Indonesian Throughflow (ITF) Variability in Halmahera Sea and its Coherency with New Guinea Coastal Current. The 2nd International Conference on Marine Science: Better Insight for the Healthy Ocean, 6–7 September 2017, Bogor, Indonesia. IOP Conference Series: Earth and Environmental Science. DOI: https://doi.org/10.1088/1755-1315/176/1/012011.
Yuliardi AY, Atmadipoera AS, Harsono G, Natih NMN, Ando K. 2021. Analysis of Characteristics and Turbulent Mixing of Seawater Mass in Lombok Strait. Ilmu Kelautan: Indonesian Journal of Marine Sciences. 26(2): 95–109. DOI: https://doi.org/10.14710/IK.IJMS.26.2.95-109.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Teknologi Perikanan dan Kelautan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This journal is published under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License. Authors who publish with this journal agree to the following terms: Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. NonCommercial — You may not use the material for commercial purposes.















