CHARACTERISTICS OF TRYPSIN ISOLATED FROM THE INTERNAL ORGANS OF YELLOWFIN TUNA AND STABILITY IN NaCl

KARAKTERISTIK TRIPSIN YANG DIISOLASI DARI ORGAN DALAM IKAN TUNA SIRIP KUNING DAN STABILITASNYA DALAM NaCl

Authors

  • Tati Nurhayati Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, IPB University, Jl. Agatis, IPB Dramaga Campus, Bogor 16680, Indonesia
  • Asadatun Abdullah Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, IPB University, Jl. Agatis, IPB Dramaga Campus, Bogor 16680, Indonesia
  • Fakhrina Auliya Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, IPB University, Jl. Agatis, IPB Dramaga Campus, Bogor 16680, Indonesia
  • Raden Hilman Wirayudha Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, IPB University, Jl. Agatis, IPB Dramaga Campus, Bogor 16680, Indonesia
  • Riki Kurniawan Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, IPB University, Jl. Agatis, IPB Dramaga Campus, Bogor 16680, Indonesia

DOI:

https://doi.org/10.24319/jtpk.16.337-350

Keywords:

halal enzyme, NaCl stability, specific activity, trypsin characteristics, tuna viscera

Abstract

The demand for enzymes in Indonesia is extremely high, and they are still imported from other countries. Commercial trypsin is usually extracted from the pancreas of pigs and cattle, so other alternative sources are needed from fish, namely the intestines, liver, and spleen of tuna. The intestine, liver, and spleen are internal fish organs that contain trypsin with different characteristics. This study aims to determine the characteristics of trypsin in the internal organs of yellowfin tuna and its stability in NaCl. The method used was a Completely Randomized Design with the treatment of different types of intestines, liver, and spleen of tuna. Optimum trypsin activity was at 60°C and pH 8, with a specific activity value in the intestine of 0.948±0.114 U/mg, liver of 0.610±0.029 U/mg, and spleen of 0.605±0.159 U/mg. The maximum reaction speeds (Vmax) showed the largest value for the intestine, liver, and spleen were 0.248 mmol/s, 0.138 mmol/s, and 0.096 mmol/s, respectively. The constant values (Km) obtained for the intestine, liver, and spleen were 2.342, 2.268, and 1.276 mM, respectively. Trypsin has a molecular weight range of 20–30 of approximately 28 kDa. The trypsins extracted from the intestine and liver were relatively stable in up to 30% NaCl with a minimum relative activity of 60%, whereas the trypsin extracted from the spleen was relatively stable up to 20% NaCl with 54% relative activity. Based on their activity and characteristics, the internal organs of tuna, especially the intestines and liver, have the potential to be sources of trypsin.

Downloads

Download data is not yet available.

References

Aissaoui N, Marzouki MN, Abidi F. 2017. Purification and Biochemical Characterization of a Novel Intestinal Protease from Scorpaena notata. International Journal of Food Properties. 20: 2151–2165. DOI: https://doi.org/10.1080/10942912.2017.1368550.

Alarcon FJ, Diaz M, Moyano FJ. 1998. Characterization and Functional Properties of Digestive Proteases in Two Sparids: Gilthead Seabream (Sparus aurata) and Common Dentex (Dentex dentex). Fish Physiology and Biochemistry. 19: 257–267. DOI: https://doi.org/10.1023/A:1007717708491.

Arbajayanti RD. 2022. Kajian Keterkaitan antara Morfometrik Spesies Ikan dengan Komposisi Kimia, Asam Amino, dan Aktivitas Enzim Tripsin [Thesis]. Bogor (ID): IPB University.

Arbajayanti RD, Nurhayati T, Nurilmala M. 2021. Komponen Asam Amino dan Aktivitas Enzim Tripsin dari Usus Tuna Sirip Kuning (Thunnus albacares, Bonnaterre 1788) dan Kakap Merah (Lutjanus campechanus, Poey 1860). Jurnal Pengolahan Hasil Perikanan Indonesia. 24(1): 97–106. DOI: https://doi.org/10.17844/jphpi.v24i1.33878.

Arndt C, Koristka S, Bartsch H, Bachmann M. 2012. Native Polyacrylamide Gels. Methods in Molecular Biology. 869: 49–53. DOI: https://doi.org/10.1007/978-1-61779-821-4_5.

Bahrens JW, Ryberg MP, Chondoromatidou V, Iburg TM. 2023. Comparative Histopatology of Livers from Baltic Cod Infected with the Parasitic Contracaecum osculatum. Journal of Fish Diseases. 46(6): 653–662. DOI: https://doi.org/10.1111/jfd.13776.

Benjakul S, Morrissey MT. 1997. Protein Hydrolysates from Pacific Whiting Solid Wastes. Journal of Agricultural Food Chemistry. 45(9): 3423–3430. DOI: https://doi.org/10.1021/jf970294g.

Bougatef A. 2013. Trypsins from Fish Processing Waste: Characteristics and Biotechnological Applications- Comprehensive Review. Journal of Cleaner Production. 57(15): 257–265. DOI: https://doi.org/10.1016/j.jclepro.2013.06.005.

Bougatef A, Balti R, Nasri R, Jellouli K, Souissi N, Nasri M. 2010. Biochemical Properties of Anionic Trypsin Acting at High Concentration of NaCl Purified from the Intestine of a Carnivorous Fish: Smooth Hound (Mustelus mustelus). Journal of Agricultural and Food Chemistry. 58(9): 5763–5769. DOI: https://doi.org/10.1021/jf100534a.

Bougatef A, Balti R, Zaied SB, Souissi N, Nasri M. 2008. Pepsinogen Pepsin from the Stomach of Smooth Hound (Mustelus mustelus); Purification Characterization and Amino Acid Terminal Sequences. Analytical Biochemistry. 72: 234–254. DOI: https://doi.org/10.1016/j.foodchem.2007.08.077.

Blanco M, Simpson BK, Pérez-Martín RI, Sotelo CG. 2013. Isolation and Partial Characterization of Trypsin from Pancreas of Small-Spotted Catshark (Scyliorhinus canicula). Journal of Food Biochemistry. 38(2): 196–206. DOI: https://doi.org/10.1111/jfbc.12038.

Bradford MM. 1976. A Rapid and Sensitive Method for Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry. 72: 234–254. DOI: http://dx.doi.org/10.1016/0003-2697(76)90527-3.

Castillo-Yanez F, Pacheco-Aguillar R, Garcia Carreno F, Toro M. 2005. Isolation and Characterization of Trypsin from Pyloric Caeca of Monterey Sardine Sardinops sagax caerulea. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 140(1): 91–98. DOI: https://doi.org/10.1016/j.cbpc.2004.09.031.

[CCI] Citra Cendekia Indonesia. 2017. Perkembangan Impor Enzim Indonesia. https://cci-indonesia.com/perkembangan-impor-enzim-indonesia/. [December 12, 2024].

Chitte R, Chaphalkar SR. 2017. Proteases in Physiology and Pathology. New York (US): Springer.

Chrisman MA, Goldcamp MJ, Rhodes AN, Riffle J. 2023. Exploring Michaelis–Menten Kinetics and the Inhibition of Catalysis in a Synthetic Mimic of Catechol Oxidase: an Experiment for the Inorganic Chemistry or Biochemistry Laboratory. Journal of Chemical Education. 100(2): 893–899. DOI: https://doi.org/10.1021/acs.jchemed.9b01146.

Costa HMS, Junior ACVF, Amaral IPG, Hirata IY, Paiva PMG, Carvalho Jr LB, Oliveira V, Bezerra RS. 2013. Metal-sensitive and Thermostable Trypsin from the Crevalle Jack (Caranx hippos) Pyloric Caeca: Purification and Characterization. Chemistry Central Journal. 7(1): 166. DOI: https://doi.org/10.1186/1752-153X-7-166.

Djarkasi GSS, Raharjo S, Noor Z. 2017. Isolasi dan Aktivitas Spesifik Enzim Lipase Indigenous Biji Kenari. Jurnal Teknologi Pertanian. 8(1): 28–35. DOI: https://doi.org/10.35791/jteta.8.1.2017.16349.

dos-Santos CWV, da Costa Marques ME, de Araujo Tenorio H, de Miranda EC, Pereira HJV. 2016. Purification and Characterization of Trypsin from Luphiosilurus alexandri Pyloric Cecum. Biochemistry and Biophysics Reports. 8: 29–33. DOI: https://doi.org/10.1016/j.bbrep.2016.08.003.

Fayyaz A, Asbi BA, Ghazali HM, Che-Man YB, Jinap S. 1995. Kinetics of Papaya Pectinesterase. Food Chemistry. 53(2): 129–135. DOI: https://doi.org/10.1016/0308-8146(95)90777-5.

[GVR] Grand View Research. 2020. Enzymes Market Size, Share & Trends Analysis Report by Product (Lipases, Polymerases & Nucleases, Carbohydrase), by Type (Industrial, Specialty), by Source (Plants, Animals), by Region, and Segment Forecasts, 2022–2030. https://www.grandviewresearch.com/industry-analysis/enzymes-industry. [December 12, 2024].

Gudmundsdóttir Á, Hilmarsson H, Stefansson B. 2013. Potential Use of Atlantic Cod Trypsin in Biomedicine. BioMed Research International. 2013(1): 1–11. DOI: https://doi.org/10.1155/2013/749078.

Hutapea RYF, Solihin I, Nurani TW, Rosalia AA, Putri AS. 2020. Strategi Pengembangan Pelabuhan Perikanan Nizam Zachman dalam Mendukung Industri Perikanan Tuna. Jurnal Teknologi Perikanan dan Kelautan. 10(2): 233–245. DOI: https://doi.org/10.24319/jtpk.10.233-245.

Joyce W, Axelsson M. 2021. Regulation of Splenic Contraction Persists as a Vestigial Trait in White-Blooded Antarctic Fishes. Journal of Fish Biology. 98(1): 287–291. DOI: https://doi.org/10.1111/jfb.14579.

Khandagale AS, Mundodi L, Sarojini BK. 2017. Isolation and Characterization of Trypsin from Fish Viscera of Oil Sardine (Sardinella longiceps). International Journal of Fisheries and Aquatic Studies. 5(2): 33–37.

Khandagale AS, Sarojini BK, Kumari SN, Suman JSD, Nooralabettu K. 2013. Isolation, Purifcation, and Biochemical Characterization of Trypsin from Indian Mackerel (Rastralliger kanagurta). Journal of Aquatic Food Product Technology. 24: 354–367. DOI: https://doi.org/10.1080/10498 850.2013.777864.

Khangembam BK, Yadavilli KS, Chakrabarti R. 2012. Purification and Characterization of Trypsin from the Digestive System of Carp Catla catla (Hamilton). International Aquatic Research. 4(1): 1–12. DOI: https://doi.org/10.1186/2008-6970-4-9.

Khantaphant S, Benjakul S. 2010. Purification and Characterization of Trypsin from the Pyloric Caeca of Brownstripe Red Snapper (Lutjanus vita). Food Chemistry. 120: 658–664. DOI: https://doi.org/10.1016/j.foodchem.2009.09.098.

Khantaphant S, Benjakul S. 2010. Comparative Study on the Proteases from Fish Pyloric Caeca and the Use for Production of Gelatin Hydrolysate with Antioxidative Activity. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 151(4): 410–419. DOI: https://doi.org/10.1016/j.cbpb.2008.08.011.

Khantaphant S, Benjakul S. 2008. Comparative Study on the Proteases from Fish Pyloric Caeca and the Use for Production of Gelatin Hydrolysate with Antioxidative Activity. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 151(4): 410–419. DOI: https://doi.org/10.1016/j.cbpb.2008.08.011.

Kishimura H, Klomklao S, Benjakul S, Chun BS. 2008. Characteristics of Trypsin from the Pyloric Ceca of Walleye Pollock (Theragra chalcogramma). Food Chemistry. 106(1): 194–199. DOI: https://doi.org/10.1016/j.foodchem.2007.05.056.

[KKP] Kementerian Kelautan dan Perikanan. 2023. Statistik Kelautan dan Perikanan 2023. Jakarta.

Klomklao S, Benjakul S, Visessanguan W. 2004. Comparative Studies on Proteolytic Activity of Splenic Extract from Three Tuna Species Commonly Used in Thailand. Journal of Food Biochemistry. 28(5): 355–372. DOI: https://doi.org/10.1111/j.1745-4514.2004.05203.x.

Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson B K, Saeki H. 2006. Trypsins from Yellowfin Tuna (Thunnus albacares) Spleen: Purification and Characterization. Comparative Biochemistry and Physiology. 144(1): 47–56. DOI: https://doi.org/10.1016/j.cbpb.2006.01.006.

Kuddus M. 2018. Cold Active Enzymes in Food Biotechnology: An Updated Mini Review. Journal of Applied Biology and Biotechnology. 6(3): 58–63. DOI: https://doi.org/10.7324/JABB.2018.60310.

Laemmli UK. 1970. Cleavage of Structural Protein During the Assembly of Head of Bacteriophage T4. Nature. 277(5259): 680–685. DOI: https://doi.org/10.1038/227680a0.

Larassagita AF, Hana, Susilo U. 2018. Aktivitas Tripsin-Like dan Kimotripsin-Like pada Ikan Sidat Tropik Anguilla bicolor McClelland. Scripta Biologica. 5(1): 55–60. DOI: https://doi.org/10.20884/1.sb.2018.5.1.798.

Namjou F, Yeganeh S, Madani R, Ouraji H. 2019. Extraction, Purification, and Characterization of Trypsin Obtained from the Digestive System of Yellowfin Seabream (Acanthopagrus latus). Archives of Razi Institute. 74(4): 405–411. DOI: https://doi.org/10.22092/ari.2018.122854.1229.

Napitupulu AK, Maysaroh NAS, Masduqi FH, Zahra AN, Fahreni A, Makfi M. 2021. Analisis Konsep Al-darūrah dalam Fatwa DSN-MUI No. 14 Tahun 2021 tentang Penggunaan Vaksin AstraZeneca. At-Thullab: Jurnal Mahasiswa Studi Islam. 3(2): 748–767. DOI: https://doi.org/10.20885/tullab.vol3.iss2.art5.

Navarro J, Perezgrueso A, Barría C, Coll M. 2018. Photo-Identification as a Tool to Study Small-Spotted Catshark Scyliorhinus canicula. Journal of Fish Biology. 92(5): 1657–1662. DOI: https://doi.org/10.1111/jfb.13609.

Nazdar N, Imani A, Noori F, Sarvi Moghanlou K. 2018. Effect of Silymarin Supplementation on Nickel Oxide Nanoparticle Toxicity to Rainbow Trout (OncorhynchFus mykiss) Fingerlings: Pancreas Tissue Histopathology and Alkaline Protease Activity. Iranian Journal of Science and Technology. 42: 353–361. DOI: https://doi.org/10.1007/s40995-016-0052-5.

Nolasco-Soria H. 2021. Improving and Standardizing Protocols for Alkaline Protease Quantification in Fish. Review in Aquaculture. 13: 43–65. DOI: https://doi.org/10.1111/raq.12463.

Nurhayati T, Abdullah A, Rahmawati S, Kurniawan R. 2024. Characteristics of Trypsin Isolated from Intestines Different of Fish and Correlation Toward Trypsin Activity. Squalen Bulletin Marine and Fisheries Postharvest and Biotechnology. 19(2): 131–143. https://doi.org/10.15578/squalen.904.

Nurhayati T, Ramadhan W, Raharja TFK. 2021. Microencapsulation of Trypsin from the Intestine of Yellowfin Tuna (Thunnus albacares). The 5th Embrio International Symposium Sustainable Development of Fisheries and Marine Resource Amidst Covid-19 Era and Beyond, September 6–7, 2021, Bogor, Indonesia. IOP Conference Series: Earth and Environmental Science.

Nurhayati T, Nugraha R, Lihuana DN. 2020. Karakterisasi Fraksi Amonium Sulfat Tripsin yang Diisolasi dari Usus Ikan Tongkol (Euthynnus affinis). Jurnal Pengolahan Hasil Perikanan Indonesia. 23(2): 372–382. DOI: https://doi.org/10.17844/JPHPI.V23I2.32221.

Olsen JV, Ong S, Mann M. 2004. Trypsin Cleaves Exclusively C-terminal to Arginine and Lysine Residues. Molecular & Cellular Proteomics. 3(6): 608–614. DOI: https://doi.org/10.1074/mcp.T400003-MCP200.

Pamungkas ID, Nurhayati T, Bustami, Abdullah A, Nurjanah. 2022. Pengaruh Penambahan Tripsin terhadap Karakteristik Surimi Ikan Nila Merah (Oreochromis niloticus). Jurnal Ilmu dan Teknologi Kelautan Tropis. 14(2): 243–258. DOI: https://doi.org/10.29244/jitkt.v14i2.33622.

Permanasari IA, Ibrahim R, Rianingsih L. 2014. Pengaruh Perbedaan Jenis Viscera Ikan sebagai Bahan Baku dan Penambahan Enzim Tripsin terhadap Mutu Kecap Ikan. Jurnal Pengolahan dan Bioteknologi Hasil Perikanan. 3(2): 82–89.

Prihanto AA, Nursyam H, Jatmiko D, Hayati RL. 2019. Isolation, Partial Purification and Characterization of Protease Enzyme from the Head of Nile Tilapia Fish (Oreochromis niloticus). Egyptian Journal of Aquatic Biology & Fisheries. 23(3): 257–262. DOI: https://doi.org/10.21608/ejabf.2019.70436.

Radzicka A, Wolfenden R. 1995. A Proficient Enzyme. Science. 267(5194): 90–93. DOI: https://doi.org/10.1126/science.7809611.

Reza W, Islam MDT, Uddin MDH, Sumon KA, Rashid H. 2020. Histopathological Changes in the Internal Organs of Female Striped Gourami (Trichogaster fasciata) Exposed to Sub-Lethal Concentrations of Salt Water. Bangladesh Journal of Fisheries. 32(2): 237–244. DOI: https://doi.org/10.52168/bjf.2020.32.28.

Rianingsih L, Ibrahim R, Anggo AD. 2016. Effect of Different Concentration Salt and Trypsin on the Physicochemical Properties of Fish Sauce Made from Sea Catfish (Arius sp.) Viscera. Jurnal Teknologi (Sciences & Engineering). 78(4–2): 99–104. DOI: https://doi.org/10.11113/jt.v78.8188.

Robinson PK. 2015. Enzymes: Principles and Biotechnological Applications. Essays in Biochemistry. 59: 1–41. DOI: https://doi.org/10.1042/bse0590001.

Rohit P, Syda RG, Rammohan K. 2012. Age, Growth and Population Structure of the Yellowfin Tuna Thunnus albacares (Bonnaterre, 1788) Exploited along the East Coast of India. Indian Journal of Fisheries. 59(1): 1–6.

Sayana KS, Sirajudheen TK. 2017. By-products from Tuna Processing Wastes an Economic Approach to Coastal Waste Management. Proceedings of the International Seminar on Coastal Biodiversity Assessment, Kottarakkara, India. 411–420.

Scopes RK. 1987. Protein Purification Principles and Practice. New York (US): Springer Verlag.

Silva J, Espósito T, Marcuschi M, Ribeiro K, Cavalli R, Oliveira V, Bezerra R. 2011. Purification and Partial Characterization of A T Rypsin from the Processing Waste of the Silver Mojarra (Diapterus rhombeus). Food Chemistry. 129: 777–782. DOI: https://doi.org/10.1016/j.foodchem.2011.05.019.

Srinivasan B. 2022. A Guide to the Michaelis–Menten Equation: Steady State and Beyond. The FEBS Journal. 289: 6086–6098. DOI: https://doi.org/10.1111/febs.16124.

Suhito IR. 2016. Ekstraksi, Purifikasi, dan Karakterisasi Alkalin Protease dari Limbah Buah Naga Merah (Hylocereus polyrhizus) [Thesis]. Surabaya (ID): Universitas Surabaya.

Sulistyowati E, Salirawati D, Amanatie. 2016. Karakterisasi Beberapa Ion Logam terhadap Aktivitas Enzim Tripsin. Jurnal Penelitian Saintek. 21(2): 107–119. DOI: https://doi.org/10.21831/jps.v21i2.12581.

Villalba-Villalba AG, Rios EM, Esquerra-Brauer MJ, Castillo-Yanez FJ. 2017. Trypsin from Jumbo Squid (Dosidicus gigas) Hepatopancreas: Purification and Characterization. Interciencia. 42(3): 168–174.

Walker JM. 1996. The Protein Protocols Handbook. Hatfield (UK): Humana Press.

Wheaton FW, Lawson TB. 1985. Processing Aquatic Food Products. New York (US): John Wiley & Sons.

Zamani A, Khajavi M, Kenari AA, Nazarpak, MH, Solouk A, Esmaeili M, Gisbert E. 2023. Physicochemical and Biochemical Properties of Trypsin-Like Enzyme from Two Sturgeon Species. Animals. 13(5): 853. DOI: https://doi.org/10.3390/ani13050853.

Zhang Y, Liang Q, Zhang C, Zhang J, Du G, Kang Z. 2020. Improving Production of Streptomyces griseus Trypsin for Enzymatic Processing of Insulin Precursor. Microbial Cell Factories. 19(1): 1–11. DOI: https://doi.org/10.1186/s12934-020-01338-9.

Downloads

Published

2025-10-26

Issue

Section

JTPK NOVEMBER 2025

How to Cite

Nurhayati, T., Abdullah, A., Auliya, F., Wirayudha, R. H., & Kurniawan, R. (2025). CHARACTERISTICS OF TRYPSIN ISOLATED FROM THE INTERNAL ORGANS OF YELLOWFIN TUNA AND STABILITY IN NaCl: KARAKTERISTIK TRIPSIN YANG DIISOLASI DARI ORGAN DALAM IKAN TUNA SIRIP KUNING DAN STABILITASNYA DALAM NaCl. Jurnal Teknologi Perikanan Dan Kelautan, 16(4), 337-350. https://doi.org/10.24319/jtpk.16.337-350