Physicochemical characterization of porang tubers (Amorphophallus muelleri) analog rice with the addition of Spirulina platensis
DOI:
https://doi.org/10.17844/w8xdp380Keywords:
antioxidant, bioactive, dietary fiber, potato starch, sensory testAbstract
Analog rice is a functional food designed to resemble conventional rice but is produced from non-rice sources. This study developed porang analog rice enriched with Spirulina platensis to improve its nutritional and antioxidant properties. The variation of four concentrations of S. platensis (0, 1.5, 3, and 4.5%) was evaluated using a completely randomized design. Sensory evaluation indicated that the 1.5% formulation was significantly preferred (p < 0.05) and selected for further analysis. On a dry basis, the optimized product contained 92.2% carbohydrates, 2.73% protein, and 57% of dietary fiber. Its cooking time was 7.53 min, with 129.2% water absorption and a bulk density of 0.47 g/mL. Phytochemical screening confirmed the presence of flavonoids, phenolic compounds, and saponins. The antioxidant activity was classified as very strong, with an IC₅₀ of 47.10 ppm, demonstrating significant radical scavenging potential. The novelty of this research lies in the unique combination of porang, potato, and Spirulina, which has not been previously applied in the development of analog rice. This formulation integrates the high dietary fiber content of porang, the starch functionality of potato, and the bioactive compounds of Spirulina, resulting in a product with enhanced nutritional quality and functional properties. Overall, porang analog rice with spirulina showed strong consumer acceptance and bioactivity, highlighting its potential as a promising functional food.
References
[AOAC] Association of Official Analytical Chemist. (1995). Official Method of Analysis. Washington DC: 16th edition.
[AOAC] Association of Official Analytical Chemist. (2005). Official Method of Analysis of The Association of Official Analytical of Chemist. Arlington: Then Association of Official Analytical Chemists, Inc.
[AOAC] Association of Official Analytical Chemist. (2019). Proximate Analysis: Carbohydrate by Difference.
Banerjee, A., Dasgupta, N., & De, B. (2005). In vitro study of antioxidant activity of Syzygium cumini fruit. Food Chemistry, 90(4), 727–733. https://doi.org/10.1016/j.foodchem.2004.04.033.
Bhattacharya, K. R., Sowbhagya, C. M., & Swamy, Y. I. (1972). Some physical properties of paddy and rice and their interrelations. Journal of the Science of Food and Agriculture, 23(2),171–186. https://doi.org/10.1002/jsfa.2740230204.
Blois, M. S. (2005). Antioxidant determination by the use of stable free radical. Nature, 181, 1191–1200. https://doi.org/10.1038/1811199a0.
[BSN] Badan Standardisasi Nasional. (2006). SNI 01-2346-2006: Pengujian Organoleptik dan atau Sensori pada Produk Pangan. Jakarta: Badan Standardisasi Nasional.
Casado, N., Casado-Hidalgo, G., González-Gómez, L., Morante-Zarcero, S., & Sierra, I. (2023). Insight into the impact of food processing and culinary preparations on the stability and content of plant alkaloids considered as natural food contaminants. Applied Sciences, 13(3), 1704. https://doi.org/10.3390/app13031704.
De Garmo, E. P., Sullivan, W. G., & Canada, C. R. (1984). Engineering economy. New York: MacMillan Publishing Company.
Devi, N. P. D., Suter, I. K., & Nocianitri, K. A. (2020). Formulasi kombinasi tepung kentang dan bekatul pada bubur instan diet diabetes melitus. Media Ilmiah Teknologi Pangan, 6(2), 96–104.
Ekantari, N., Marsono, M., Pranoto, Y., & Harmayani, E. (2017). Pengaruh media budidaya menggunakan air laut dan air tawar terhadap sifat kimia dan fungsional biomassa kering Spirulina platensis. Agritech, 37(2),173–182. https://doi.org/10.22146/agritech.10843.
Farnsworth, N. R. (1966). Biological and phytochemical screening of plants. Journal of Pharmaceutical Sciences, 55(3), 225–276. https://doi.org/10.1002/jps.2600550302.
Finirsa, M. A., Warsidah, Sofiana, M. S. J., & Risko. (2022). Karakteristik fisikokimia beras analog dari kombinasi rumput laut Eucheuma cottonii, mocaf, dan sagu. Oseanologia, 1(2), 69–76. https://doi.org/10.26418/jose.v1i2.54566.
Florie, G. A., & Kusumayanti, H. (2024). Production of analog rice from composite flour: mocaf, corn, and porang flour. Journal of Vocational Studies on Applied Research, 6(1), 12–16. https://doi.org/10.14710/jvsar.v6i1.22662.
Hussein, A., Ibrahim, G., Kamil, M., El-Shamarka, M., Mostafa, S., & Mohamed, D. (2025). Spirulina-enriched pasta as functional food rich in protein and antioxidant. Biointerface Res. Appl. Chem, 11, 14736-14750. https://doi.org/10.33263/BRIAC116.1473614750.
Koli, D. K., Rudra, S. G., Bhowmik, A., & Pabbi, S. (2022). Nutritional, functional, textural and sensory evaluation of Spirulina enriched green pasta: A potential dietary and health supplement. Foods, 11(7), 979. https://doi.org/10.3390/foods11070979.
Kurniasari, I., Kusnandar, F., & Budijanto, S. (2020). Karakteristik fisik beras analog instan berbasis tepung jagung dengan penambahan k-karagenan dan konjak. Agritech, 40(1), 64–73. https://doi.org/10.22146/agritech.47491.
Kutner MK, Nachtsheim CJ, & Neter J. 2004. Applied Linear Regression Models. Ed 4. Boston (US): McGraw-Hill.
Lee, J. S., Choi, I., & Han, J. (2022). Construction of rice protein-based meat analogues by extruding process: Effect of substitution of soy protein with rice protein on dynamic energy, appearance, physicochemical, and textural properties of meat analogues. Food Research International, 161, 111840. https://doi.org/10.1016/j.foodres.2022.111840.
Masoumifeshani, B., Abedian K. A., Sottorff, I., Crüsemann, M., & Amiri, M. J. (2025). Identification and evaluation of antioxidant and anti-aging peptide fractions from enzymatically hydrolyzed proteins of Spirulina platensis and Chlorella vulgaris. Marine Drugs, 23(4), 162. https://doi.org/10.3390/md23040162.
Montgomery, D. C. (2012). Design and analysis of experiments. Ed-8. Singapore: John Wiley and Sons.
Paraskevopoulou, A., Kaloudis, T., Hiskia, A., Steinhaus, M., Dimotikali, D., & Triantis, T. M. (2024). Volatile profiling of spirulina food supplements. Foods, 13(8), 1–21. https://doi.org/10.3390/foods13081257.
Peryam, D. R., & Pilgrim, F. J. (1957). Hedonic scale method of measuring food preferences. Food Technology, , Suppl., 9–14.
Purwaningsih, S. (2022). Kajian serat dan komponen aktif beras analog dari rumput laut Gracilaria sp. Jurnal Pengolahan Hasil Perikanan Indonesia, 25(3), 382-392. https://doi.org/10.17844/jphpi.v25i3.40138
Raczyk, M., Polanowska, K., Kruszewski, B., Grygier, A., & Michałowska, D. (2022). Effect of spirulina (Arthrospira platensis) supplementation on physical and chemical properties of semolina (Triticum durum) based fresh pasta. Molecules, 27(2), 1–13, https://doi.org/10.3390/molecules27020355.
Safira, D., & Suryaningsih, W. (2023). Karakterisasi beras porang analog dengan penambahan pati aren dan maizena. Jurnal Industri Hasil Perkebunan,18(1), 24–38. https://doi.org/10.33104/JIHP.V18I1.7925.
Salsabila, L., Purwaningsih, S., & Ramadhan, W. (2025). Kinetic study of quality changes and shelf-life prediction of Gracilaria sp. seaweed-based analog rice using the Arrhenius model. Jurnal Pengolahan Hasil Perikanan Indonesia, 28(4). https://doi.org/10.17844/jphpi.v28i4.62203.
Sembiring, W.K. (2022). Karakterisasi dan aktivitas antioksidan rice cracker dengan penambahan Spirulina platensis. [Skripsi]. Institut Pertanian Bogor.
Setiarto, R. H. B., Adyeni, W. D., Puspawati, N. N., Wardana, A. A., Anshory, L., & Khusniati, T. (2024). Physicochemical, enzymatic and fermentation modifications improve resistant starch levels and prebiotic properties of porang (Amorphophallus oncophyllus) flour. International Journal of Food Science and Technology, 59(12), 9353–9367. https://doi.org/10.1111/ijfs.17580.
Sheskin, D. J. (2004). Handbook of parametric and nonparametric statistical procedures. Ed-5. New York (US): Chapman and Hall.
Shi, S., Zhang, G., Zhao, D., Ma, J., Wang, X., Chen, D., & Jiang, Y. (2023). Changes in water absorption and morphology of rice with different eating quality during soaking. European Food Research and Technology, 249(3),759–766. https://doi.org/10.1007/s00217-022-04173-x.
Siaw, M. O., Wang, Y. J., McClung, A. M., & Mauromoustakos, A. (2021). Effect of protein denaturation and lipid removal on rice physicochemical properties. Lwt,150,112015. https://doi.org/10.1016/j.lwt.2021.112015.
Sosulski, F. W. (1962). The centrifuge method for determining flour absorption in hard red spring wheats, 39, 344–350.
Su, K., Fan, Z., Usman, M., Zhao, A., Dong, H., Duan, X., & Xu, J. (2025). Effect of Spirulina platensis on the structure and aggregation of gluten proteins to improve texture and physiochemical properties of wheat noodles. Food Hydrocolloids, 110959. https://doi.org/10.1016/j.foodhyd.2024.110959.
Tessier, R., Calvez, J., Khodorova, N., & Gaudichon, C. (2021). Protein and amino acid digestibility of 15 N Spirulina in rats. European Journal of Nutrition, 60, 2263–2269.
Tietze, H. W. (2004). Spirulina micro food macro blessing. Ed-4. India: Jain Publisher.
Trilaksani, W., Setyaningsih, I., & Masluha, D. (2015). Formulasi jelly drink berbasis rumput laut merah dan Spirulina platensis. Jurnal Pengolahan Hasil Perikanan Indonesia, 18(1), 74–82. https://doi.org/10.17844/jphpi.2015.18.1.74.
Uzlasir, T., Selli, S., & Kelebek, H. (2023). Effect of salt stress on the phenolic compounds, antioxidant capacity, microbial load, and in vitro bioaccessibility of two microalgae species (Phaeodactylum tricornutum and Spirulina platensis). Foods, 12(17), 3185. https://doi.org/10.3390/foods12173185.
Wang, M., Yin, Z., Sun, W., Zhong, Q., Zhang, Y., & Zeng, M. (2023). Microalgae play a structuring role in food: Effect of Spirulina platensis on the rheological, gelling characteristics, and mechanical properties of soy protein isolate hydrogel. Food Hydrocolloids,136.https://doi.org/10.1016/j.foodhyd.2022.108244.
Yam, K. L., & Papadakis, S. E. (2004). A simple digital imaging method fot measuring and analyzing colour of food surfaces. Journal Food Engineering,61,137–142. https://doi.org/10.1016/S0260-8774(03)00195-X.
Zulfa, F., Rochmah, A. N., Saputri, F. D., Suleman, D. P., & Anandito, R. B. K. (2023). Macronutrient profile of analog rice based on cornstarch, modified cassava flour, and suweg flour. In BIO Web of Conferences. EDP Sciences. https://doi.org/10.1051/bioconf/20236903009.
Downloads
Published
Versions
- 2025-09-24 (2)
- 2025-08-30 (1)
Issue
Section
License
Copyright (c) 2025 Bintang Diva Juno, Iriani Setyaningsih, Yeşim Büyükateş, Kustiariyah Tarman

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.






