Aktivitas Antibakteri Senyawa Aktif Esktrak Jintan Hitam (Nigella sativa) Terhadap Bakteri MRSA secara In Silico
Abstract
Semakin tinggi penggunaan antibiotik akan meningkatkan risiko terjadinya resistensi bakteri. S. aureus merupakan bakteri penyebab mastitis tertinggi yaitu mencapai 67% diantara bakteri patogen penyebab mastitis lainnya. Akibat tingginya penggunaan antibiotik, terbentuklah strain S. aureus yang resisten yaitu MRSA. Bahan alami seperti jintan hitam bisa menjadi alternatif pengobatan penyakit menular bakteri. Penelitian ini bertujuan untuk menguji sifat an-tibakteri ekstrak jintan hitam terhadap bakteri MRSA (ID:3VSL) secara in silico dan mengetahui zat aktif mana yang mempunyai potensi antibakteri terbaik. Berdasarkan hasil LC-MS dari 89 zat aktif yang teridentifikasi, 9 diantaranya mempunyai potensi antibakteri yang cukup baik dibandingkan sefotaksim setelah dilakukan prediksi bioavailabilitas dan toksisitas lipinski. Hasil analisis penelitian menunjukkan 3 zat aktif yang terdiri dari prolylleucine, (2-(1,3-ben-zodioxol-5-yl)-4,5,6,7-tetramethyl-1H-benzimidazole, dan Bis(4-ethylbenzylidene)) Sorbitol merupakan ligan produk alami dengan aktivitas antibakteri terbaik serta menjadi kandidat bahan aktif alternatif pengganti antibiotik.
References
Astriyani W, Surjowardojo P, Susilorini TE. 2017. Daya hambat ekstrak buah mahkota dewa (Phaleria macrocarpa L.) dengan pelarut etanol dan aquades terhadap bakteri Staphylococcus aureus penyebab mastitis pada sapi perah. Jurnal Ternak Tropika. 18(2):8–13. doi: 10.21776/ub.jtapro.2017.018.02.2.
Bassan A, Alves VM, Amberg A, Anger LT, Auerbach S, Beilke L, Bender A, Cronin MTD, Cross KP, et al. 2021. In silico approaches in organ toxicity hazard assessment: current status and future needs in predicting liver toxicity. Journal Pre–proofs. 20:100187. doi: 10.1016/j.comtox.2021.100187.
Bosshard HR, Marti DN, Jelesarov I. 2004. Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings. Journal of Molecular Recognition. 17:1–16. doi: 10.1002/jmr.657.
Duart G, Lamb J, Ortiz–Mateu J, Elofsson A. 2022. Intra–helical salt bridge contribution to membrane protein insertion. Journal of Molecular Biology. 5(15):1–16. doi: 10.1016/j.jmb.2022.167467.
Ehrt C, Brinkjost T, Koch O. 2019. Binding site characterization – similarity, promiscuity, and druggability. MedChemComm. 10(7):1145–1159. doi: 10.1039/C9MD00102F.
Elmowalid GAE, Ahmad AAM, El–Hamid MIA, Ibrahim D, Wahda A, El–Oksh ASA, Yonis AE, Elkady MA, Ismail TA, Alkhedaide AQ, et al. 2022. Nigella sativa extract potentially inhibited methicillin–resistant Staphylococcus aureus induced infection in rabbits: potential immunomodulatory and growth promoting properties. Animals. 12(19):1–17. doi: 10.3390/ani12192635.
Erhirhie EO, Ihekwereme CP, Ilodigwe EE. 2018. Advances in acute toxicity testing: strengths, weaknesses and regulatory acceptance. Interdisciplinary Toxicology. 11(1):5–12. doi: 10.2478/intox-2018-0001.
Fakhruri M, Rahmayanti Y, Isfanda. 2021. Potensi fitokimia Citrus aurantium (hesperetin, naringenin) dalam menghambat xantin oksidase pada hiperurisemia secara in silico. Jurnal Health Sains. 2(1):79–90. doi: 10.46799/jhs.v2i1.80.
Ferdian PR. 2016. Potensi senyawa asam lemak rantai pendek sebagai aktivator langsung ampk secara in silico untuk terapi sindrom metabolik [tesis]. Bogor: Institut Pertanian Bogor.
Foroufanzhar F, Bazzaz BSF, Hosseinzadeh H. 2014. Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iranian Journal of Basic Medical Sciences. 17(12):929–939.
Handayani SDP. 2022. Hubungan struktur dan aktivitas senyawa biflavonoid genus Araucaria sebagai inhibitor enzim α–glukosidasa secara in silico [skripsi]. Bogor: Institut Pertanian Bogor.
Hasan R, I’anah FC, Bahi RRR. 2022. Docking molekuler senyawa potensial daun kelor (Moringa oleifera) terhadap reseptor folat. Journal of Innovation Research and Knowledge. 2(2):519–527.
Kelutur FJ, Mustarichie R, Umar AK. 2020. Virtual screening kandungan senyawa kipas laut (Gorgonia mariae) sebagai anti–asma. Jurnal Penelitian Kimia. 16(2):48. doi: 10.20961/alchemy.16.2.3996.199-210.
Khusro A, Aarti C, Salem AZM, Pliego AB, Rivas–Caceres RR. 2020. Methyl–coenzyme M reductase (MCR) receptor as potential drug target for inhibiting methanogenesis in horses using Moringa oleifera L: an in silico docking study. Journal of Equine Veterinary Science. 91:103149. doi: 10.1016/j.jevs.2020.102949.
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. 64:4–17. doi: 10.1016/S0169-409X(96)00423-1.
Morya VK, Dewaker V, Kim EK. 2012. In silico study and validation of phosphotransacetylase (PTA) as a putative drug target for Staphylococcus aureus by homology-based modelling and virtual screening. Applied Biochemistry and Biotechnology. 168(7):1792–1805. doi: 10.1007/s12010-012-9897-z.
Nandhini P, Kumar P, Mickymaray S, Alothaim AS, Somasundaram J, Rajan M. 2022. Recent development in methicillin–resistant Staphylococcus aureus (MRSA) treatment: a review. Antibiotic. 11(5):606–627. doi: 10.3390/antibiotics11050606.
Naufa F, Mutiah R, dan Indrawijaya YYA. 2021. Studi in silico potensi senyawa katekin teh hijau (Camellia sinensis) sebagai antivirus SARS CoV-2 tehadap spike glycoprotein (6LZG) dan Main Protease (5R7Y). Journaf of Food and Pharmaceutical Sciences. 10(1):584–596.
Nursanti O, Wardani I, Hadisoebroto G. 2022. Validasi penambatan molekuler (docking) Zingiber Officinale dan Cymbopogon citratus sebagai ligan aktif reseptor Pparγ. Jurnal Farmasi Higea. 14(1):79–95. doi: 10.52689/higea.v14i1.469.
Othman BR, Kuan CH, Mohammed AS, Cheah YK, Tan CW, New CY, Thung TY, Chang WS, Loo YY, Nakaguchi Y, et al. 2018. Occurrence of methicillin-resistant Staphylococcus aureus in raw shellfish at retail markets in Malaysia and antibacterial efficacies of black seed (Nigella sativa) oil against MRSA. Food Control. 90:324–331. doi: 10.1016/j.foodcont.2018.02.045.
Paterson GK, Harrison EM, Craven EF, Petersen A, Larsen AR, Ellington MJ, Torok ME, Peacock SJ, Parkhill J, Zadoks RN, et al. 2013. Incidence and characteristisation of methicillin-resistant Staphylococcus aureus (MRSA) from nasal colonisation in participants attending a cattle veterinary conference in the UK. Plos One. 8(7): e68463. doi: 10.1371/journal.pone.0068463.
Ramakrishnan V, Ravikumar P, Raja T, Vijayarani K, Arivuchelva A, Parthiban M, Thangapandiyan M, Preetha SP. 2021. In silico evaluation of phytocompunds from Indian medicinal plants for canine mammary tumours. The Journal of Phytopharmacology. 10(2):80–83. doi: 10.31254/phyto.2021.10202.
Rena SR, Nurhidayah, Rustan. 2022. Analisis molecular docking senyawa Garcinia mangostana L sebagai kandidat anti SARS-Cov-2. Jurnal Fisika Unand. 11(1):82–88. doi: 10.25077/jfu.11.1.82-88.2022.
Sharma J, Bhardwaj VK, Singh R, Rajendran V, Purohit R, Kumar S. 2021. An in-silico evaluation of different bioactive molecules of tea for their inhibition potency against non structural protein-15 od SARS-CoV-2. Food Chemistry. 346:128933. doi: 10.1016/j.foodchem.2020.128933.
Singgih M, Permana B, Maulidya SAI, Yuliana A. 2019. Studi in silico metabolit sekunder kapang Monascus sp. sebagai kandidat obat antikolestrerol dan antikanker. ALCHEMY Jurnal Penelitian Kimia. 15(1):104–123. doi: 10.20961/alchemy.15.1.25294.104-123.
Sinurat MR, Rahmayanti Y, Rizarullah. 2021. Uji aktivitas antidiabetes senyawa baru daun yakon (Smallanthus sonchifolius) sebagai inhibitor enzim DPP–4: studi in silico. Jurnal IPA dan Pembelajaran IPA. 5(2):138–150. doi: 10.24815/jipi.v5i2.20068.
Surjowardojo P, Susilorini TE, Sirait GRB. 2015. Daya hambat dekok kulit apel manalagi (Malus sylvestris Mill.) terhadap pertumbuhan Staphylococcus aureus dan Pseudomonas sp. penyebab mastitis pada sapi perah. Jurnal Ternak Tropika. 16(2):40–48. doi: 10.24002/biota.v7i3.6077.
Ummah K, Mahardika RG, Mardiliyah A. 2020. Sintesis senyawa vanili metil keton dan uji aktivitas antiinflamasi terhadap enzim COX–1 dan COX–2 melalui analisis in silico. Alchemy: Journal of Chemistry. 8(2):1–11. doi: 10.18860/al.v8i2.10863.
Weese JS. 2010. Methicillin-resistant Staphylococcus aureus in animals. ILAR journal. 51(3):233–244. doi: 10.1093/ilar.51.3.233.
Wulandari D. 2018. Esterifikasi komponen minyak sereh wangi dan perbandingan tipe aromanya [skripsi]. Malang: Universitas Brawijaya.
Xie WY, Shen Q, Zhao FJ. 2018. Antibiotics and antibiotic resistance from animal manures to soil: a review. European Journal of Soil Science. 69:181–195. doi: 10.1111/ejss.12494.
Yoshida H, Kawai F, Obayashi E, Akashi S, Roper DI, Tame JRH, Park SY. 2012. Crystal structure of Penicillin–Binding Protein 3 (PBP3) from methicillin–resistant Staphylococcus aureus in the apo and cefotaxime–bound forms. Journal of Molecular Biology. 423:351–364. doi: 10.1016/j.jmb.2012.07.012.
Zainab B, Ayaz Z, Alwahibi MS, Khan S, Rizwana H, Soliman DW, Alawaad A, Abbasi AM. 2020. In-silico elucidation of Moringa oleifera phytochemicals against diabetes mellitus. Saudi Journal of Biological Science. 27(9):2299–2307. doi: 10.1016/j.sjbs.2020.04.002.
Zheng C, Pei T, Huang C, Chen X, Bai Y, Xue J, Wu Z, Mu J, Li Y, Wang Y. 2016. A novel systems pharmacology platform to dissect action mechanisms of traditional Chinese medicines for bovine viral diarrhea. European Journal of Pharmaceutical Sciences. 94:33–45. doi: 10.1016/j.ejps.2016.05.018.
Copyright (c) 2023 Dea Khalissa Anidya, Rini Madyastuti Purwono, Dimas Andrianto, Nina Tri Kusumawati
This work is licensed under a Creative Commons Attribution 4.0 International License.