Adequacy of micromineral content (Fe, Zn, Cu) of Napier grass (Pennisetum purpureum) as beef cattle feed in Merapi volcanic slopes of Magelang Regency, Indonesia

Kecukupan kandungan mikromineral (Fe, Zn, Cu) rumput gajah (Pennisetum purpureum) sebagai pakan ternak sapi pedaging di pegunungan Merapi di Kabupaten Magelang, Indonesia

  • L Hartati Program Studi Peternakan, Fakultas Pertanian, Universitas Tidar, Jl. Kapten Suparman 39 Magelang, Jawa Tengah, Indonesia
  • F Syarifudin Program Studi Peternakan, Fakultas Pertanian, Universitas Tidar, Jl. Kapten Suparman 39 Magelang, Jawa Tengah, Indonesia
  • P B Pramono Program Studi Peternakan, Fakultas Pertanian, Universitas Tidar, Jl. Kapten Suparman 39 Magelang, Jawa Tengah, Indonesia
  • Nur Hidayah
  • D Suhendra Program Studi Peternakan, Fakultas Pertanian, Universitas Tidar, Jl. Kapten Suparman 39 Magelang, Jawa Tengah, Indonesia
  • M Arifin 2) Department of Animal Science, Faculty of Animal and Agricultural Sciences, Diponegoro University, Semarang 50275, Central Java, Indonesia
Keywords: Mineral, napier grass, topography

Abstract

A study was conducted to assess the micromineral content of Pennisetum purpureum, commonly known as Napier grass, in the Magelang Regency of Central Java, Indonesia. Three different topographical areas, namely flat, undulated, and sloping, were considered for the study. Samples of Napier grass were collected from each area, with a total of 20 samples taken from each area. The samples were then subjected to various processing techniques, including fresh weight measurement, chopping, sun-drying, oven-drying, and milling. The mineral content of the samples was determined using an atomic absorption spectrophotometer (AAS). The results revealed that the mineral content of Zn and Cu in Napier grass varied significantly across the three topographical areas (p<0.05), with average values of 40.34 and 11.56 ppm, 33.44 and 10.75 ppm, and 40.38 and 13.43 ppm for flat, undulated, and sloping areas, respectively. The Fe content, on the other hand, was found to be not significantly different across the areas, with an average of 377.90 ppm. These findings suggest that the use of Napier grass as a basal feed for beef cattle, with a dry matter requirement of 7.56 kg day-1 and a proportion of Napier grass of 7.13 kg DM day-1, would provide sufficient micro minerals, including Fe, Cu, and Zn, for the cattle in the three topographical areas.

Key words:        mineral, napier grass, topography

Downloads

Download data is not yet available.

References

ACIAR. 1990. Laboratory Techniques for Plant and Soil Analysis. In Lisle L, Gaudron J, and Lefroy R. UNE-ACIAR- Crawford Fund. Armidale (AU): Department of Agronomy and Soil Science, University of New England and Australian Centre for International Agricultural Research. p. 149.

Aini LN, Soenarminto BH, Hanudin E & Sartohadi J. 2019. Plant nutritional potency of recent volcanic materials from the southern fl ank of mt. Merapi, Indonesia. Bulgarian Journal of Agricultural Science, 25(3): 527–533

AOAC. 2005. Official Methods of Analysis. 18th ed. Arlington (US): AOAC International

ARC. 1980. The Nutrient Requirements of Ruminant Livestock. 4th Edition. Wallingford (UK) : CAB International,

Asmare B, Demeke S, Tolemariam T, Tegegne F & Jane W. 2018. Appraisal of the mineral content of Desho grass (Pennisetum pedicellatum Trin.) as affected by stage of maturity and agroecpologies in Ethiopia. Journal Agriculture Environment Science 3(1): 36-44.

Berutu R, Sardilla P, Evitayani, Ifradi & Khalil. 2016. Analisis potensi dan kualitas pakan hijauan yang tumbuh liar di Lahan Kampus Limau Manis Universitas Andalas Padang. Pastura, 5(2): 121–127.

Central Bureau of Statistics. 2014. Kabupaten Magelang dalam Angka. Badan Pusat Statistik, Jakarta.

Davis J, Anil KS, Mathew J, Suraj PT, Ally K & Ramnath V. 2017. Mineral profile of hybrid Napier grass under slurry irrigation. International Journal of Advvanced Research in Biological Science, 4(3): 119-126.

Fujihara T, Hayashida M, Cruz EM & Orden EA. 2015. Supplementing Napier grass (P. purpureum) with Flemingia foliage (F. macrophylla) and rice bran improves mineral status and growth performance of goats. Livestock Research for Rural Development, 27(1): 1-8

Hilal EY, Elkhairey MAE & Osman AOA. 2016. The role of zinc, manganse and copper in rumen metabolism and immune function: a review article. Open Journal of Animal Sciences, 6(4): 304-324.

Hill GM & Shannon MC. 2019. Copper and zinc nutritional issues for agricultural animal production. Biological Trace Element Research, 188 (1): 148-159.

Indira D & Samuel A. 2014. Mineral status of dairy buffaloes in West Godavari District of Andhra Pradesh in India. International Journal of Innovative Research and Development, 3(5): 356-361.

Khan ZI, Hussain IA, Ashraf M & McDowell LR. 2006. Mineral status of soils and forages in Southwestern Punjab-Pakistan: Micro-minerals. Asian-Australian Journal of Animal Science, 19: 1139-1147.

Khan ZI, Hussain IA, Ashraf M, Valeem EE, & Javed I. 2005. Evaluation of variation of soil and forage minerals in pasture in a semiarid region of Pakistan. Pakistan Journal of Botany, 37: 921-931

McDonald P, Edwards RA & Greenhalgh JFD. 1988. Animal Nutrition. New York (US) :John Willeyand Sons Inc.,. p. 96−105.

Mirzaei F. 2012. Minerals profile of forages for grazing ruminants in Pakistan. Journal of Animal Sciences 2(3): 133-141.

NRC. 2000. Nutrient Requirement of Beef Cattle (7th revised ed). Washington US): National Academy Press.

Onyango AA, Dickhoefer U, Rufino MC, Butterbach-Bahl K & Goopy JP. 2019. Temporal and spatial variability in the nutritive value of pasture vegetation and supplement feedstuffs for domestic ruminants in Western Kenya. Asian-Australas Journal of Animal Science 32(5): 637-647.

Pamalka KDC, Munasinghe MALSS, Weerasinghe WMPB & W. A. D. V. Weerathilake WADV. 2021. Mineral content of forages in coconut triangle, wet zone and dry zone dairy production regions, during south-west monsoon in Sri Lanka. Journal of Agriculture and Ecosystems, 3(2): 20-40.

Patel N, Bergamaschi M, Magro L, Petrini A & Bittante G. 2019. Relationships of a detailed mineral profile of meat with animal performance and beef quality. Animals (Basel), 9(12): 1073.

Wysocka D, Sobiech P, Snarska A & Wysocka D. 2020. Iron in cattle health. Journal of Elementology, 25(3): 1175-1185.

Zhang J, Yang R, Li YC & Ni X. 2021. The role of soil mineral multi-elements in improving the geographical origin discrimination of tea (Camellia sinensis). Biological Trace Element Research, 199: 4330–4341

Published
2023-12-31
How to Cite
HartatiL., F SyarifudinF. S., P B PramonoP. B. P., HidayahN., D SuhendraD. S., & M ArifinM. A. (2023). Adequacy of micromineral content (Fe, Zn, Cu) of Napier grass (Pennisetum purpureum) as beef cattle feed in Merapi volcanic slopes of Magelang Regency, Indonesia: Kecukupan kandungan mikromineral (Fe, Zn, Cu) rumput gajah (Pennisetum purpureum) sebagai pakan ternak sapi pedaging di pegunungan Merapi di Kabupaten Magelang, Indonesia. Jurnal Ilmu Nutrisi Dan Teknologi Pakan, 21(3), 208-211. https://doi.org/10.29244/jintp.21.3.208-211