• Novriaman Pakpahan Program Studi Ilmu Pangan Pascasarjana, Institut Pertanian Bogor, Bogor
  • Feri Kusnandar Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Bogor; dan Southeast Asian Food and Agricultural Science and Tecnology Center, Institut Pertanian Bogor, Bogor.
  • Elvira Syamsir Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Bogor; dan Southeast Asian Food and Agricultural Science and Tecnology Center, Institut Pertanian Bogor, Bogor.
Keywords: bound water, moisture sorption isotherm, tapioca crackers, texture


The qualities of tapioca crackers after frying, such as degree of expansion and crispness are influenced by their moisture content before frying. This research aimed to study the moisture sorption isotherm (MSI) behavior of crackers at different storage temperatures and their physical properties before and after frying. Pre-fried crackers were stored at water activities (aw) of 0.07-0.89 and 20, 30, and 40°C and their MSI pattern as well as bound water were determined, while their physical changes were observed. The fittest MSI model was Guggenheim, Anderson and de Boer (GAB). The primary bound water at 20, 30 and 40°C were 0.043, 0.040, dan 0.037 g H2O/g solid, while the secondary bound water were 0.096, 0.102, and 0.113 g H2O/g solid, respectively. The density and texture profile of the pre-fried crackers changed rapidly above their secondary bound water. Rapid reduction in the degree of expansion and crispness occurred at tertiary bound water. The aw of pre-fried crackers with high degree of expansion were at 0.33-0.53, 0.42-0.57, and 0.53-0.63 when stored at 20, 30, and 40°C, respectively. At the same storage conditions their maximum degree of expansion occurred at aw of 0.44, 0.47, and 0.52, respectively. Similarly, high crispiness occurred at aw of 0.33-0.57, 0.42-0.57, and 0.40-0.63, respectively, while maximum cripsness was at aw of 0.44, 0.44, and 0.54, respectively.


[AACC] American Association of Cereal Chemists International. 2012. Approved Methods of Ana-lysis: AACC International, St. Paul, Minnesota.

Al-Muhtaseb H, McMinn WAM, Magee TRA. 2002. Moisture sorption isotherm characteristics of food product – a review. Food Bioprod Process 80: 118–128. DOI: 10.1205/096030802529387 53.

Andrade RD, Lemus R, Pérez CE. 2011. Models of sorption isotherms for food: Uses and limita-tions – a review. Revista de la Facultad de Química Farmacéutica 18: 325–334.

Balderrama JGP, Cadima SCC. 2012. Water ad-sorption isotherms of amaranth (amaranthus caudatus) flour. Food Nutr Sci 5: 153-157. DOI: 10.4236/fns.2014.52020.

Boukouvalas ChJ, Krokida MK, Maroulis ZB, Marinos-Kouris D. 2006. Effect of material moisture content and temperature on true density of foods. Int J Food Prop 9: 109-125. DOI: 10.1080/10942910500473970.

[BPOM] Badan Pengawas Obat dan Makanan. 2006. Kategori Pangan. Surat Keputusan No-mor HK. Badan Pengawas Obat dan Makanan Republik Indonesia.

Chang H, Chen H. 2013. Association between tex-tural profiles and surface electromyographic (semg) behaviors of microwavable cassava cutlefish crackers with various expansion ratios. Food Res Int 153: 334-341. DOI: 10.1016/j. foodres.2013.04.015.

Chuma A, Ogawa T, Kobayashi O, Adachi S. 2012. Moisture sorption isotherm of durum wheat flour. Food Sci Technol Res 18: 617-622. DOI: 10.3136/fstr.18.617.

Dogan H, Kokini JL. 2007. Psychophysical markers for crispness and influence of phase behavior and structure. J Texture Stud 38: 324–354. DOI: 10.1111/j.1745-4603.2007.00100.x.

Guine PFR. 2009. Sorption isotherm pears using different models. Int J Fruit Sci 9: 11-22. DOI: 10.1080/15538360902801197.

Kupfer K. 2005. Electromagnetic Aquametry: Elec-tromagnetic Wave Interaction with Water and Moist Substances. 83-84. Springer, Berlin.

Kulchan R, Boonsupthip W, Suppakul P. 2010. Shelf life prediction of package cassava-flour-based baked product by using empirical models and activation energy for water vapor permeability of polyolefin films. J Food Eng 100: 461-467. DOI: 10.1016/j.jfoodeng.2010.04.031.

Madrigal L, Sandoval AJ, Müllera AJ. 2011. Effects of corn oil on glass transition temperatures of cassava starch. Carbohyd Polym 85: 875–884. DOI: 10.1016/j.carbpol.2011.04.013.

Moraga G, Talens P, Moraga MJ, Martínez-Nava-rrete N. 2011. Implication of water activity and glass transition on the mechanical and optical properties of freeze-dried apple and banana slices. J Food Eng 106: 212-219. DOI: 10.1016/ j.jfoodeng.2011.05.009.

Mosquera LH, Moraga G, de Cordoba PF, Martinez-Navarrete N. 2011. Water content-water acti-vity-glass transition temperature relationship of spray-dried borojo as related to change in color and mechanical properties. Food Biophys 6: 397-406. DOI: 10.1007/s11483-011-9215-2.

Muzilla M, Unklessay N, Unklessay K, Helsel Z. 1990. Effect of moisture content on density, heat capacity and conductivity of restructured pork/soy hull mixture. J Food Eng 55: 1491-1493. DOI: 10.1111/j.1365-2621.1990.tb03551. x.

Nguyen TT, Le TQ, Songsermpong S. 2013. Shrimp cassava cracker puffed by microwave tech-nique: effect of moisture and oil content on some physical characteristics. Kasetsart J Nat Sci 47: 434-446.

Perdomo J, Cova A, Sandoval AJ, García L, Laredo E, Müller AJ. 2009. Glass transition tempera-tures and water sorption isotherms of cassava starch. Carbohyd Polym 76: 305–313. DOI: 10.1016/j.carbpol.2008.10.023.

Primo-Martin C, Castro-Prada EM, Meinders MBJ, Vereijken PFG, van Vliet. 2008. Effect of structure of the crispness of toasted rusk roll. Food Res Int 41: 480-486. DOI: 10.1016/ res.2008.02.004.

Purohit SR, Rao PS. 2017. Modelling and analysis of moisture sorption isotherm of raw and pre-gelatinized rice flour and its crystalline status prediction. Food Anal Method 10: 1914-1921. DOI: 10.1007/s12161-016-0745-6.

Saeleaw M, Schleining, G. 2011a. Effect of frying parameters on crispiness and sound emission of cassava crackers. J Food Eng 103: 229–236. DOI: 10.1016/j.jfoodeng.2010.10.010.

Saeleaw M, Schleining, G. 2011b. Crispness in dry foods and quality measurements based on acoustic–mechanical destructive techniques- a review. J Food Eng 105: 387–399. DOI: 10. 1016/j.jfoodeng.2011.03.012.

Sahin S, Sumnu SG. 2006. Water Activity and Sorp-tion Properties of Foods, In Physical Properties of Foods.193–226. Springer Science+Business Media, New York.

Sahu JK, Das H. 2010. Moisture sorption isotherm, properties of sorbed water and heat of sorption of sandesh–an indian milk product. Food Process Pres 34: 152–166. DOI: 10.1111/j.17 45-4549.2009.00461.x.

Sant’Anna V, Englert AH, Corrêa APF, Brandelli A, Marczak LGF, Tessaro IC. 2014. Grape marc powder: physicochemical and microbiological stability during storage and moisture sorption isotherm. Food Bioprocess Tech 7: 2500-2506. DOI: 10.1007/s11947-013-1198-1.

Serdyuk VM. 2008. Dielectric study of bound water in grain at radio and microwave frequencies. Prog Electromag Res 84: 379–406. DOI: 10. 2528/PIER08081103.

Soekarto ST. 1978. Pengukuran air ikatan dan peranannya pada pengawetan pangan. Buletin Perhimpunan Ahli Pangan Indonesia 3: 4-8.

Soekarto ST, Adawiyah DR. 2012. Keterkaitan ber-bagai konsep interaksi air dalam produk pa-ngan - ulasan ilmiah. J Teknol Industri Pangan 23: 107-116.

Soekarto ST, Steinberg PM. 1981. Determination of Binding Energy for Three Fraction of Bound Water. In: Water Activity: Influences on Food Quality. Ed Rockland and Sterwart. 265-279. Akademic Press, New York. DOI: 10.1016/ B978-0-12-591350-8.50016-4.

Talab KT, Ibrahim MN, Spotar S, Talib RA, Muham-mad K. 2012. Glass transition tempera-ture, mechanical properties of rice and their relation-ships with milling quality. Int J Food Eng 8: 1-20. DOI: 10.1515/1556-3758.2197.

Tham TWY, Wang C, Yeoh ATH, Zhou W. 2016. Moisture sorption isotherm and caking proper-ties of infant formulas. J Food Eng 175: 117-126. DOI: 10.1016/j.jfoodeng.2015.12.014.

Tongdang T, Meenun M, Chainui J. 2008. Effect of sago starch addition and steaming time on making cassava cracker (keropok). Starch/ Stärke 60: 568-576. DOI: 10.1002/star.2008002 13.

Taewee TK. 2011. Cracker “keropok”: A review on factors influencing expansion. Int Food Res J 18: 855-866.

Ugwuanyi JO. 2008. Moisture sorption isotherm and xerophilic moulds associated with dried cocoyam chips in storage in Nigeria. Int J Food Sci Technol 43: 846–852. DOI: 10.1111/j.1365-2621.2007.01525.x.

Van der Sman, Broeze. 2013. Structuring of indi-rectly expanded snacks based on potato ingre-dients – a review. J Food Eng 114: 413-425. DOI: 10.1016/j.jfoodeng.2012.09.001.

Wang Y, Zhang M, Mujumdar AS. 2013. Effect of cassava starch gel, fish gel and mixed gels and thermal-treatment on structure development and various quality parameters in microwave vacuum-dried gel slices. Food Hydrocolloid 3: 26-37. DOI: 10.1016/j.foodhyd.2013.02.005.

Zomorodian A, Kavoosi Z, Momenzadeh L. 2011. Determination of EMC isotherm and appropriate mathematical models for canola. Food Bioprod Proces 89: 407-413. DOI: 10.1016/j.fbp.2010.1 0.006.

How to Cite
Pakpahan, N., Kusnandar, F., & Syamsir, E. (2017). PERILAKU ISOTERM SORPSI AIR DAN DAN PERUBAHAN FISIK KERUPUK TAPIOKA PADA SUHU PENYIMPANAN YANG BERBEDA. Jurnal Teknologi Dan Industri Pangan, 28(2), 91-101.