IMPACT OF INCREASING SEA SURFACE TEMPERATURE ON POTENTIAL FISHING ZONE OF SKIPJACK TUNA Katsuwonus pelamis IN MAKASSAR STRAIT

Andi Risda Fitrianti Abudarda, Mukti Zainuddin, Safruddin

Abstract

Makassar Strait plays a vital role as one of the skipjack tuna fishing grounds in Indonesia. This study aimed to detect the skipjack tuna preference of sea surface temperature (SST) and chlorophyll-a (Chl-a) in Makassar Strait and to map out the possible shifting potential fishing zone (PFZ) of skipjack tuna by simulating sea surface temperature increase. We analyzed the skipjack catch data from July to November 2020, and we added the previous data in June, July, August, October, and December 2019 in the same study area. We analyzed together with satellite imagery data set of SST and Chl-a using GAM. We used three scenarios for the SST increase model simulation, which are 0.25, 0.5, and 1℃. The results showed that skipjack tuna is relatively high in SST ranging from 28.3 to 30.4°C and Chl-a ranging from 0.18 to 0.28 mg/m3. The PFZ based on sea surface temperature simulation showed that PFZ area form in the northern part shifting to the southern part of Makassar Strait based on the increasing sea surface temperature simulation visible in September, which shifted from 0.017-5.421⁰S to 2.923-6.802⁰S and October shifted from 0.017-6.802⁰S to 5.007-6.802⁰S. Knowing the shifting of the potential fishing zone of skipjack tuna could be an important step toward fishing operation and management for skipjack tuna resource management in Makassar Strait.

References

Andrade, H.A. 2003. The relationship between the skipjack tuna (Katsuwonus pelamis) fishery and seasonal temperature variability in the south-western Atlantic. Fisheries Oceanography, 12(1): 10–18. https://doi.org/10.1046/j.1365-2419.2003.00220.x
Arai, T., A. Kotake, S. Kayama, M. Ogura, & Y. Watanabe. 2005. Movements and life history patterns of the skipjack tuna Katsuwonus pelamis in the western Pacific, as revealed by otolith Sr: Ca ratios. Journal of the Marine Biological Association of the United Kingdom, 85(5): 1211–1216. https://doi.org/10.1017/S0025315405012336
Dueri, S., L. Bopp, & O. Maury. 2014. Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution. Global Change Biology, 20(3): 742–753. https://doi.org/10.1111/gcb.12460
Gordon, A.L. 2005. Oceanography of the Indonesian seas and their throughflow. Oceanography, 18(SPL.ISS. 4): 15–27. https://doi.org/10.5670/oceanog.2005.01
Habibi, A., R.Y. Setiawan, & Y. Zuhdy. 2012. Wind-driven coastal upwelling along south of sulawesi island. Indonesian Journal of Marine Sciences, 15(2): 113-118. https://doi.org/10.14710/ik.ijms.15.2.113-118
Intergovernmental Panel on Climate Change (IPCC). 2007. Intergovernmental panel on climate change. Fourth assessment report. Geneva, Switzerland: Intergovernmental Panel on Climate Change. Cambridge; UK: Cambridge University Press. https://doi.org/10.1038/446727a
Intergovernmental Panel on Climate Change (IPCC). 2014. Summary for policymakers in managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change (Vol. 9781107025). https://doi.org/10.1017/CBO9781139177245.003
Jagannathan, S., A. Samraj, & M. Rajavel. 2012. Potential fishing zone estimation by rough cluster predictions. Proceedings of International Conference on Computational Intelligence, Modelling and Simulation, 82–87. https://doi.org/10.1109/CIMSim.2012.34
Jung, S., I.C. Pang, J ho. Lee, I. Choi, H.K. & Cha. 2014. Latitudinal shifts in the distribution of exploited fishes in Korean waters during the last 30 years: A consequence of climate change. Reviews in Fish Biology and Fisheries, 24(2): 443–462. https://doi.org/10.1007/s11160-013-9310-1
Kurniawati, F., T.B. Sanjoto, & Juhadi. 2015. Pendugaan zona potensi penangkapan ikan pelagis kecil di perairan laut Jawa pada musim barat dan musim timur dengan menggunakan citra aqua modis. Geo-Image, 4(2): 9–19. https://doi.org/10.15294/geoimage.v4i2.7278
Lehodey, P., M. Bertignac, A. Stoens, L. Memery, & N. Grima. 1998. Predicting skipjack tuna forage distributions in the equatorial Pacific using a coupled dynamical bio-geochemical model. Fisheries Oceanography, 7(3-4): 317–325. https://doi.org/10.1046/j.1365-2419.1998.00063.x
Muhling, B.A., Y. Liu, S.K. Lee, J.T. Lamkin, M.A. Roffer, F. Muller-Karger, & J.F. Walter. 2015. Potential impact of climate change on the Intra-Americas Sea: Part 2. Implications for Atlantic bluefin tuna and skipjack tuna adult and larval habitats. Journal of Marine Systems, 148: 1–13. https://doi.org/10.1016/j.jmarsys.2015.01.010
Palacios, D.M., S.J. Bograd, D.G. Foley, & F.B. Schwing. 2006. Oceanographic characteristics of biological hot spots in the North Pacific: A remote sensing perspective. Deep-Sea Research Part II: Topical Studies in Oceanography, 53(3–4): 250–269. https://doi.org/10.1016/j.dsr2.2006.03.004
Polovina, J.J., E. Howell, D.R. Kobayashi, & M.P. Seki. 2001. The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources. Progress in Oceanography, 49(1–4): 469–483. https://doi.org/10.1016/S0079-6611(01)00036-2
Saitoh, S. I., R. Mugo, I.N. Radiarta, S. Asaga, F. Takahashi, T. Hirawake, Y. Ishikawa, T.In. Awaji, & S. Shima. 2011. Some operational uses of satellite remote sensing and marine GIS for sustainable fisheries and aquaculture. ICES Journal of Marine Science, 68(4): 687–695. https://doi.org/10.1093/icesjms/fsq190
Subramanian, S., N. Manjulekshmi, S.N. Pratap, K. Janhavi, P. Tejaswini, & M.F. Pastta. 2014. A manual on the use of potential fishing zone. ICAR Research Complex for Goa, 35. www.icargoa.res.in
Wiryawan, B., N. Loneragan, U. Mardhiah, S. Kleinertz, P.I. Wahyuningrum, J. Pingkan, Wildan, P.S. Timur, D. Duggan, & I. Yulianto. 2020. Catch per unit effort dynamic of yellowfin tuna related to sea surface temperature and chlorophyll in Southern Indonesia. Fishes, 5(3): 1–16. https://doi.org/10.3390/fishes5030028
Zainuddin, M., Safruddin, S.A. Farhum, M. Ridwan, A.R.S. Putri, & R. Hidayat. 2019. The effect of oceanographic factors on skipjack tuna fad vs free school catch in the Bone bay, Indonesia. 11(1): 123–130. http://doi.org/10.29244/jitkt.v11i1.24775
Zainuddin, M., A. Farhum, S. Safruddin, M.B. Selamat, S. Sudirman, N. Nurdin, M. Syamsuddin, M. Ridwan, & I. Saitoh. 2017. Detection of pelagic habitat hotspots for skipjack tuna in the Gulf of Bone-Flores Sea , southwestern Coral Triangle tuna , Indonesia. Plos One, 12(10): e0185601. https://doi.org/10.1371/journal.pone.0185601
Zainuddin, M., S.A. Farhum, A. Nelwan, & M.B. Selamat. 2015. Characteristics of skipjack tuna potential fishing ground in the bone bay-Flores. J. Ipteks. 2(3): 228–237. https://doi.org/10.20956/jipsp.v2i3.76

Authors

Andi Risda Fitrianti Abudarda
arisda65@gmail.com (Primary Contact)
Mukti Zainuddin
Safruddin
AbudardaA. R. F., ZainuddinM., & Safruddin. (2021). IMPACT OF INCREASING SEA SURFACE TEMPERATURE ON POTENTIAL FISHING ZONE OF SKIPJACK TUNA Katsuwonus pelamis IN MAKASSAR STRAIT . Jurnal Ilmu Dan Teknologi Kelautan Tropis, 13(3), 427-437. https://doi.org/10.29244/jitkt.v13i3.35692

Article Details