Potensi Probiotik Bakteri Asam Laktat Asal Madu dari Tiga Jenis Lebah yang Berbeda
Abstract
Certain strains of Lactic acid bacteria (LAB) especially from the genus of Lactobacillus and Bifidobacteria have been recognized to have health beneficial effect as probiotics. Honey has been known to have health beneficial effects and contains lactic acid bacteria. However, information pertaining the characteristics of LAB from honey is still limited. The present research aimed to isolate LAB from different types of honey and to evaluate their potency as probiotic. The LAB were enumerated and isolated from honey produced by three different honeybees: Apis cerana, Heterotrigona itama, and Trigona laeviceps. The results showed the count of LAB in three different honey ranged from 5.0x101 to 2.3x107 CFU/mL and affected by different time of sampling. The highest of average LAB count was found in honey of Heterotrigona itama. There were 48 Gram positive catalase-negative bacterial isolates obtained from the three different honey types. Twelve isolates were selected based on their survival in bile salt. The twelve selected isolates were capable of growing in MRSB pH 2.5, and MRSB containing 0.3% bile salt. They also exhibited strong antibacterial activity against pathogenic bacteria. Identification based on 16S rRNA revealed that of the twelve isolates, nine were identified as Lactiplantibacillus plantarum and three others as Pediococcus acidilactici. The twelve isolates showed high survival at low pH dan bile salt and exhibited antimicrobial activity against pathogen, hence they are considered as probiotic candidates.
References
Almasaudi S. 2021. The antibacterial activities of honey. Saudi J Biol Sci 28: 2188-2196. https://doi.org/10.1016/j.sjbs.2020.10.017
Anderson KE, Sheehan TH, Mott BM, Maes P, Snyder L, Schwan MR, Walton A, Jones BM, Corby-Harris V. 2013. Microbial ecology of the hive and pollination landscape: Bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS One 8: 1-16. https://doi.org/10.1371/journal.pone.0083125
[BAM] Bacteriological Analytical Manual. 2001. Aerobic Plate Count. https://www.fda.gov/food/laboratory-methods-food/bam [22 Maret 2019].
Chen CC, Lai CC, Huang HL, Huang WY, Toh HS, Weng TC, Chuang YC, Lu YC, Tang HJ. 2019. Antimicrobial activity of Lactobacillus species against carbapenem-resistant Enterobacteria-ceae. Front Microbiol 10: 1-10. https://doi.org/10.3389/fmicb.2019.00789
Endo A, Salminen S. 2013. Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Syst Appl Microbiol 36: 444-448. https://doi.org/10.1016/j.syapm.2013.06.002
Guimarães-cestaro L, Serrão JE, Message D. 2016. Simultaneous detection of Nosema spp., Ascosphaera apis and Paenibacillus larvae in honey bee products. J Hymenopt Res 49: 43-50. https://doi.org/10.3897/JHR.49.7061
Guo C, Zhang L, Li J, Zhang Y, Xue C, Yi H, Du M, Han X. 2012. Screening of bile salt hydrolase-active lactic acid bacteria for potential cholesterol-lowering probiotic use. Adv Mater Res 345: 139-146. https://doi.org/10.4028/www.scientific.net/AMR.345.139
Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder P, Sanders ME. 2014. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11: 506-514. https://doi.org/10.1038/nrgastro.2014.66
Hroncova Z, Havlik J, Killer J, Doskocil I, Tyl J, Kamler M. 2015. Variation in honey bee gut microbial diversity affected by ontogenetic stage, age, and geographic location. PLoS One 10: 1-17. https://doi.org/10.1371/journal.pone.0118707
Hu CH, Ren LQ, Zhou Y, Ye BC. 2019. Characterization of antimicrobial activity of three Lactobacillus plantarum strains isolated from Chinese traditional dairy food. Food Sci Nutr 7: 1997-2005. https://doi.org/10.1002/fsn3.1025
Huang CH, Li SW, Huang L, Watanabe K. 2018. Identification and classification for the Lactobacillus casei group. Front Microbiol 9: 1-13. https://doi.org/10.3389/fmicb.2018.01974
Karyawati AT, Nuraida L, Lestari Y, Meryandini A. 2018. Characterization of abundance and diversity of lactic acid bacteria from Apis dorsata hives and flowers in East Nusa Tenggara, Indonesia. Biodiversitas 19: 845-851. https://doi.org/10.13057/biodiv/d190319
Liu W, Bao Q, Jirimutu, Qing M, Siriguleng, Chen X, Sun T, Li M, Zhang J, Yu J, Bilige M, Sun T, Zhang H. 2012. Isolation and identification of lactic acid bacteria from Tarag in Eastern Inner Mongolia of China by 16S rRNA sequences and DGGE analysis. Microbiol Res 167: 110-115. https://doi.org/10.1016/j.micres.2011.05.001
Ludvigsen J, Rangberg A, Avershina E, Sekelja M, Kreibich C, Gro A, Rudi K. 2015. Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season. Microbes Env 30: 235-244. https://doi.org/10.1264/jsme2.ME15019
Martinson VG, Moy J, Moran NA. 2012. Establish-ment of characteristic gut bacteria during development of the honeybee worker. Appl Enviromental Microbiol 78: 2830-2840. https://doi.org/10.1128/AEM.07810-11
Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, Newton ILG. 2012. Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS One 7: e32962. https://doi.org/10.1371/journal. pone.0032962
Meryandini A, Karyawati AT, Nuraida L, Lestari Y. 2020. Lactic acid bacteria from Apis dorsata hive possessed probiotic and angiotensin-converting enzyme inhibitor activity. Makara J Sci 24: Article 7. https://doi.org/10.7454/mss.v24i1.11728
Mudroňová D, Toporčák J, Nemcová R, Gancarčí ková S, Hajdučková V, Rumanovská K. 2011. Lactobacillus sp. as a potential probiotic for the prevention of Paenibacillus larvae infection in honey bees. J Apic Res 50: 323-324. https://doi.org/10.3896/IBRA.1.50.4.11
Mulaw G, Sisay T, Muleta D, Tesfaye A. 2019. In vitro evaluation of probiotic properties of lactic acid bacteria isolated from some traditionally fermented Ethiopian food products. Int J Microbiol 2019: 7179514. https://doi.org/10.1101/574194
Nuraida L, Winarti S, Prangdimurti E. 2011. Evaluasi in vitro terhadap kemampuan isolat bakteri asam laktat asal air susu ibu untuk mengasimilasi kolesterol dan mendekonjugasi garam empedu. J Teknol Industri Pangan 22: 46-52.
Oh YJ, Jung DS. 2015. Evaluation of probiotic properties of Lactobacillus and Pediococcus strains isolated from Omegisool, a traditionally fermented millet alcoholic beverage in Korea. Food Sci Technol 63: 437-444. https://doi.org/10.1016/j.lwt.2015.03.005
Ołdak A, Zielińska D, Rzepkowska A, Kołozyn-Krajewska D. 2017. Comparison of antibacterial activity of Lactobacillus plantarum strains isolated from two different kinds of regional cheeses from Poland: Oscypek and Korycinski cheese. Biomed Res Int 2017: 1-10. https://doi.org/10.1155/2017/6820369
Olofsson TC, Alsterfjord M, Nilson B, Butler È, Vásquez A. 2014. Lactobacillus apinorum sp. nov., Lactobacillus melliferv sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. Int J Syst Evol Microbiol 64: 3109-3119. https://doi.org/10.1099/ijs.0.059600-0
Olofsson TC, Butler È, Markowicz P, Lindholm C, Larsson L, Vásquez A. 2016. Lactic acid bacterial symbionts in honeybees - an unknown key to honey’s antimicrobial and therapeutic acti-vities. Int Wound J 13: 668-679. https://doi.org/10.1111/iwj.12345
Pan X, Chen F, Wu T, Tang H, Zhao Z. 2009. The acid, bile tolerance, and antimicrobial property of Lactobacillus acidophilus NIT. Food Control 20: 598-602. https://doi.org/10.1016/j.foodcont.2008.08.019
Pato U, Yusuf Y, Fitriani S, Jonnadi NN, Wahyuni MS, Feruni JA, Jaswir I. 2020. Inhibitory activity of crude bacteriocin produced by lactic acid bac-teria isolated from dadih against Listeria monocytogenes. Biodiversitas 21: 1295-1302. https://doi.org/10.13057/biodiv/d210404
Pato U, Yusuf Y, Fitriani S, Tartila, Yeni R, Fadillah F, Husnaini L. 2021. Optimization of the prowth of Pediococcus pentosaceus Strain 2397 in inhibiting pathogenic Listeria monocytogenes. IOP Conf. Series: Earth and Environmental Science 757: 012056. https://doi.org/10.1088/1755-1315/757/1/012056
Pato U, Ayu DF, Riftyan E, Restuhadi F, Pawenang WT, Firdaus R, Rahma A, Jaswir I. 2022. Cellulose microfiber encapsulated probiotic: Viability, acid and bile tolerance during storage at different temperature. Emerg Sci J 6: 106-116. https://doi.org/10.28991/ESJ-2022-06-01-08
Parichehreh S, Tahmasbi G, Sarafrazi A, Imani S, Tajabadi N. 2018. Isolation and identification of Lactobacillus bacteria found in the gastrointestinal tract of the dwarf honey bee, Apis florea Fabricius, 1973 (Hymenoptera : Apidae). Apidologie 49: 430-438. https://doi.org/10.1007/s13592-018-0569-z
Powell JE, Martinson VG, Urban-Mead K, Moran NA. 2014. Routes of acquisition of the gut microbiota of Apis mellifera. Appl Environ Microbiol 80: 7378-7387. https://doi.org/10.1128/AEM.01861-14
Russell KA, McFrederick QS. 2021. Elevated tem-perature may affect nectar microbes, nectar sugars, and bumble bee foraging preference. Microb Ecol 84: 473-482. https://doi.org/10.1007/s00248-021-01881-x
Saraiva MA, Zemolin APP, Franco JL, Boldo JT, Stefenon VM, Triplett EW, Camargo FA de O, Roesch LFW. 2015. Relationship between honeybee nutrition and their microbial commu-nities. Antonie Van Leeuwenhoek 107: 921-933. https://doi.org/10.1007/s10482-015-0384-8
Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
Tokatli M, Gülgör G, Elmacı SB, İşleyen NA, Özçelik F. 2015. In vitro properties of potential probiotic indigenous lactic acid bacteria originating from traditional pickles. Biomed Res Int 2015: 1-8. https://doi.org/10.1155/2015/315819
Tsai C, Lin P, Hsieh Y. 2008. Three Lactobacillus strains from healthy infant stool inhibit enterotoxigenic Escherichia coli grown in vitro. Anaerob 14: 61-67. https://doi.org/10.1016/j.anaerobe.2007.11.003
Varghese N, Joy PP. 2014. Manual Microbiology. India: Karala Agricultural University.
Vázquez-Quiñones CR, Moreno-Terrazas R, Nativi dad-Bonifacio I, Quiñones-Ramírez EI, Vázquez-Salinas C. 2018. Microbiological assessment of honey in México. Rev Argent Microbiol 50: 75-80. https://doi.org/10.1016/j.ram.2017.04.005
Yao L, Seaton SC, Ndousse-Fetter S, Adhikari AA, DiBenedetto N, Mina AI, Banks AS, Bry L, Devlin AS. 2018. A selective gut bacterial bile salt hydrolase alters host metabolism. Elife 17: e37182. https://doi.org/10.7554/eLife.37182
Yazdi MKS, Davoodabadi A, Zarin HRK, Ebrahimi MT, Dallal MMS. 2017. Characterisation and probiotic potential of lactic acid bacteria isolated from Iranian traditional yogurts. J Anim Sci 16: 185-188. https://doi.org/10.1080/1828051X.2016.1222888
Yonatika NO, Widiasih N, Hamidah M, Nurhakim MD, Budiarto H, Bintang DMC, Sani LMI, Lestari DF, Setyaningsih WA, Subhan B, Madduppa H. 2021. Genetic structure and phylogenetic relationships of Phyllidiellapustulosa species from Seribu Islands, North Sulawesi, Halmahera, and West Papua. IOP Conf Ser: Earth Environ Sci. 944 012028. https://doi.org/10.1088/1755-1315/944/1/012028
Yusuf D, Nuraida L, Dewanti-Hariyadi R, Hunaefi D. 2020. In vitro characterization of lactic acid bacteria from Indonesian kefir grains as probio-tics with cholesterol-lowering effect. J Microbiol Biotechnol 30: 726-732. https://doi.org/10.4014/jmb.1910.10028
Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70: 2782-2858. https://doi.org/10.1099/ijsem.0.004107