Bekatul Beras Hitam Terfermentasi Memperbaiki Kondisi Kolon Mencit yang Diinduksi Senyawa Karsinogen Azoxymethane

Nouverra Nadya Putri, Slamet Budijanto, Endang Prangdimurti, Bambang Pontjo

Abstract

Worldwide, colon cancer has become the fourth cause of death in terms of cancer. A high fiber and antioxidants diet help promote a healthy diet and prevent colon cancer. Black rice bran has high content both in fiber and phenolic. The aim of this research was to observe the potential of fermented black rice bran in improving colon conditions profiles of azoxymethane (AOM)-induced mice, comprising lactic acid bacteria (LAB) colony count, short-chain fatty acids (SCFAs) concentration, and malondialdehyde (MDA). Rhizopus oligosporus was used for fermenting the black rice bran. Five weeks old male Balb/c mice were divided into four groups (n=6) based on their diets. AOM was injected intraperitoneally and Dextran Sodium Sulphate was added to their drinking water, thus initiating inflammation in the colon. The number of LAB in faeces at the end of intervention in the groups of fermented rice bran group (FRB) (9.04±0.04 log CFU) and non-fermented rice bran group (NRB) (8.99±0.04 log CFU) were higher than that of the positive control group (8.33±0.06 log CFU/g) but fewer as compared to the negative control (9.63±0.05 log CFU). The concentrations of SCFAs (acetic acid, propionic acid and butyric acid) of the cecum content in the NRB group (11.92±0.00, 2.31±0.01 and 3.41±0.01 mM) were higher in the positive control group (8.90±1.30, 1.60±0.16 and 2.27±0.31 mM). As compared to the positive control group, the concentration of propionic acid of cecum content in the FRB group was higher (2.09±0.32 mM), but the concentrations of acetic acid and butyric acid were indifferent. The MDA level of the FRB group (1.41±0.03 µmol) was lower thanthat of the NRB group (1.88±0.05 µmol), and the MDA level of NRB was lower than that of the positive control group (2.03±0.09 µmol). The results showed that both FRB and NRB had a positive role in increasing the number of LAB, ALRP concentrations, and decreasing MDA levels in AOM-induced mice colons.

References

[AOAC] Association of Official Analytical Chemists. Official Method Analysis. 2000. Total, Soluble, dan Insoluble Dietary Fiber Enzymatic-gravimetric Method. https://acnfp.food.gov.uk [15 Juni 2022].

Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. 2017. Global patterns and trends in colorectal cancer incidence and mortality. Gut 66: 683–691. https://doi.org/10.1136/gutjnl-2015-310912

Canani RB, Di Costanzo M, Leone L. 2012. The Epigenetic effects of butyrate: Potential therapeutic implications for clinical practice. Clin Epigenetics 4: 4(2012). https://doi.org/10.1186/1868-7083-4-4

Chu J, Zhao H, Lu Z, Lu Z, Bie X, Zhang C. 2019. Improved physicochemical and functional properties of dietary fiber from millet bran fermented by Bacillus natto. Food Chem 294: 79–86. https://doi.org/10.1016/j.foodchem.2019.05.035

Daou C, Zhang H. 2014. Functional and physiological properties of total, soluble, and insoluble dietary fibres derived from defatted rice bran. J Food Sci Technol 51: 3878-3885. https://doi.org/10.1007/s13197-013-0925-y

El Waly B, Macchi M, Cayre M, Durbec P. 2014. Oligodendrogenesis in the normal and pathological central nervous system. Front Neurosci 8: 145. https://doi.org/10.3389/fnins.2014.00145

Eze JI, Anene BM, Chukwu CC. 2008. Determination of serum and organ malondialdehyde (MDA) concentration, a lipid peroxidation index, in Trypanosoma brucei-infected rats. Compar Clin Pathway 17: 67–72. https://doi.org/10.1007/s00580-008-0722-6

Gu S, Chen D, Zhang J-N, Lv X, Wang K, Duan L-P, Nie Y, Wu X-L. 2013. Bacterial community mapping of the mouse gastrointestinal tract. PLoS ONE 8: e74957. https://doi.org/10.1371/journal.pone.0074957

Hamaker BR, Tuncil YE. 2014. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J Mol Biol 426: 3838-3850. https://doi.org/10.1016/j.jmb.2014.07.028

Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer R-J. 2008. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27: 104-109. https://doi.org/10.1111/j.1365-2036.2007.03562.x

Henderson AJ, Kumar A, Barnett B, Dow SW, Ryan EP. 2012. Consumption of rice bran increases mucosal immunoglobulin a concentrations and numbers of intestinal Lactobacillus spp. J Med Food 15: 469–475. https://doi.org/10.1089/jmf.2011.0213

Hijová E, Kuzma J, Strojný L, Bomba A, Bertková I, Chmelárová A, Hertelyová Z, Benetinová V, Stofilová J, Ambro L. 2017. Ability of Lactobacillus plantarum LS/07 to modify intestinal enzymes activity in chronic diseases prevention. Acta Biochimica Polonica 64: 113-116. https://doi.org/10.18388/abp.2016_1308

Islam J, Koseki T, Watanabe K, Ardiansyah, Budijanto S, Oikawa A, Alauddin M, Goto T, Aso H, Komai M, Shirakawa H. 2017. Dietary supplementation of fermented rice bran effectively alleviates dextran sodium sulfate-induced colitis in mice. Nutrients 9: 747. https://doi.org/10.3390/nu9070747

Islam MS, Matsuki N, Nagasaka R, Ohara K, Hosoya T, Ozaki H, Ushio H, Hori M. 2014. Chapter 34-rice bran antioxidants in health and wellness. wheat and rice in disease prevention and health. 443–451. Elsevier Inc, UK. https://doi.org/10.1016/B978-0-12-401716-0.00034-9

Jia Q, Chen X, Köllner G, Rinkel J, Fu J, Labbé J, Xiong W, Dickschat JS, Gershenzon J, Chen F. 2019. Terpene synthase genes originated from bacteria through horizontal gene transfer contribute to terpene diversity in fungi. Scientific Reports 9: 9223. https://doi.org/10.1038/s41598-019-45532-1

[Kemenkes RI] Kementrian Kesehatan Republik Indonesia. 2014. Hasil Riskesdas 2013.

[Kemenkes RI] Kementrian Kesehatan Republik Indonesia. 2019. Hasil Utama Riskesdas 2018.

Kasprzak-Drozd K, Oniszczuk T, Stasiak M, Oniszczuk A. 2021. Beneficial effects of phenolic compounds on gut microbiota and metabolic syndrome. Int J Mol Sci 22: 3715. https://doi.org/10.3390/ijms22073715

Komiyama Y, Andoh A, Fujiwara D, Ohmae H, Araki Y, Fujiyama Y, Mitsuyama K, Kanauchi O. 2011. New prebiotics from rice bran ameliorate inflammation in murine colitis models through the modulation of intestinal homeostasis and the mucosal immune system. Scand J Gastroenterol 46: 40–52. https://doi.org/10.3109/00365521.2010.513062

Kurniati Y, Budijanto S, Nuraida L, Dewi FNA. 2017. Peningkatan senyawa fenolik bekatul dengan SSF (solid state fermentation) sebagai pencegah kanker. Buletin Iptek Tanaman Pangan 12: 97-104.

Law BMH, Waye MMY, So WKW, Chair SY 2017. Hypotheses on the potential of rice bran intake to prevent gastrointestinal cancer through the modulation of oxidative stress. Int J Mol Sci 18: 1352. https://doi.org/10.3390/ijms18071352

Li Y, Niu L, Guo Q, Shi L, Deng X, Liu X, Xiao C. 2022. Effects of fermentation with lactic bacteria on the structural characteristics and physicochemical and functional properties of soluble dietary fiber from prosomillet bran. LWT 154: 112609. https://doi.org/10.1016/j.lwt.2021.112609

Louis P, Hold GL, Flint HJ. 2014. The Gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12: 661-672. https://doi.org/10.1038/nrmicro3344

Macfarlane GT, Macfarlane S. 2012. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 95: 50-60. https://doi.org/10.5740/jaoacint.SGE_Macfarlane

Mitra P, Mandal NC, Acharya K. 2016. Polyphenolic extract of Termitomyces heimii: Antioxidant activity and phytochemical constituents. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit 11: 25–31. https://doi.org/10.1007/s00003-015-0976-2

Moongngarm A, Daomukda N, Khumpika S. 2012. Chemical compositions, phytochemicals, and antioxidant capacity of rice bran, rice bran layer, and rice germ. APCBEE Proc 2: 73-79. https://doi.org/10.1016/j.apcbee.2012.06.014

Nurtiana W. 2018. Potensi Bekatul Beras Hitam untuk Mengubah Konsentrasi Asam Lemak Rantai Pendek dan Aktivitas Enzim β-Glucuronidase sebagai Penghambat Perkembangan Kanker Kolon secara In Vivo. [Tesis]. Bogor: Fakultas Teknologi Pertanian, Institut Pertanian Bogor.

Ohigashi S, Sudo K, Kobayashi D, Takahashi O, Takahashi T, Asahara T, Nomoto K, Onodera H. 2013. Changes of the intestinal microbiota, short chain fatty acids, and fecal pH in patients with colorectal cancer. Digestive Dis Sci 58: 1717–1726. https://doi.org/10.1007/s10620-012-2526-4

Rašić I, Rašić A, Akšamija G, Radović S. 2018. The relationship between serum level of malondialdehyde and progression of colorectal cancer. Acta Clin Croat 57: 411-416. https://doi.org/10.20471/acc.2018.57.03.02

Ribeiro WR, Vinolo MAR, Calixto LA, Ferreira CM. 2018. Use of gas chromatography to quantify short chain fatty acids in the serum, colonic luminal content and feces of mice. Bio-Protocol 8: e3089. https://doi.org/10.21769/bioprotoc.3089

Safrida. 2020. Penghambatan Proliferasi Sel Kanker Kolon WiDr in Vitro Oleh Ekstrak Bekatul Beras Hitam Fermentasi. [Tesis]. Bogor: Fakultas Teknologi Pertanian, Institut Pertanian Bogor.

Sandhu KS, Punia S, Kaur M. 2017. Fermentation of cereals: A tool to enhance bioactive compounds. Plant Biotechnology: Recent Advancements and Developments. 157–170. Springer, Singapore. https://doi.org/10.1007/978-981-10-4732-9_8

Schippa S, Conte MP. 2014. Dysbiotic events in gut microbiota: Impact on human health. Nutrients 6: 5786-5805. https://doi.org/10.3390/nu6125786

Schmidt CG, Furlong EB. 2012. Effect of particle size and ammonium sulfate concentration on rice bran fermentation with the fungus Rhizopus oryzae. Bioresour Technol 123: 36–41. https://doi.org/10.1016/j.biortech.2012.07.081

Sheflin MA, Borresen EC, Wdowik MJ, Rao S, Brown RJ, Heuberger AL, Broeckling CD, Weir TL, Ryan EP. 2015. Pilot dietary intervention with heat-stabilized rice bran modulates stool microbiota and metabolites in healthy adults. Nutrients 7: 1282–1300. https://doi.org/10.3390/nu7021282

Sivamaruthi BS, Kesika P, Chaiyasut C. 2018. A comprehensive review on functional properties of fermented rice bran. Pharmacog Rev 2: 218-224. https://doi.org/10.4103/phrev.phrev_11_18

Sivaprakasam S, Prasad PD, Singh N. 2016. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol Ther 164: 144-151. https://doi.org/10.1016/j.pharmthera.2016.04.007

Slavin JL. 2008. Position of the american dietetic association: Health implications of dietary fiber. J Am Diet Assoc 108: 1716-1731. https://doi.org/10.1016/j.jada.2008.08.007

Suzuki R, Kohno H, Sugie S, Nakagama H, Tanaka T. 2006. Strain differences in the susceptibility to azoxymethane and dextran sodium sulfate-induced colon carcinogenesis in mice. Carcinog 27: 162–169. https://doi.org/10.1093/carcin/bgi205

Tang Y, Chen Y, Jiang H, Nie D. 2011. The role of short-chain fatty acids in orchestrating two types of programmed cell death in colon cancer. Autophagy 7: 235-237. https://doi.org/10.4161/auto.7.2.14277

Uysal M, Gül SS, Karaman S, Tas U, Sapmaz HI, Uysal F, Aytekin K, Tümer MK. 2017. Caecum location in laboratory rats and mice: An anatomical and radiological study. Laboratory Animals 51: 245–255. https://doi.org/10.1177/0023677216658916

Wang M, Wichienchot S, He X, Fu X, Huang Q, Zhang B. 2019. In vitro colonic fermentation of dietary fibers: fermentation rate, short-chain fatty acid production and changes in microbiota. Trends in Food Sci Technol 88: 1-9. https://doi.org/10.1016/j.tifs.2019.03.005

Yang M, Ashraf J, Tong L, Wang L, Zhang X, Li N, Zhou S, Liu L. 2021. Effects of Rhizopus oryzae and Aspergillus oryzae on prebiotic potentials of rice bran pretreated with superheated steam in an in vitro fermentation system. LWT 139: 110482. https://doi.org/10.1016/j.lwt.2020.110482

Yoshida Y, Umeno A, Shichiri M. 2013. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J Clin Biochem Nutr 52: 9-16. https://doi.org/10.3164/jcbn.122112

Zeng H, Lazarova DL, Bordonaro M. 2014. Mechanisms linking dietary fiber, gut microbiota and colon cancer prevention. World J Gastrointest Oncol 6: 41–51. https://doi.org/10.4251/wjgo.v6.i2.41

Zhao G, Zhang R, Dong L, Huang F, Tang X, Wei Z, Zhang M. 2018. Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. LWT 87: 450-456. https://doi.org/10.1016/j.lwt.2017.09.016

Zhao Y, Wu J, Li JV, Zhou N-Y, Tang H, Wang Y. 2013. Gut microbiota composition modifies fecal metabolic profiles in mice. J Proteome Res 12: 2987–2999. https://doi.org/10.1021/pr400263n

Zhong L, Zhang X, Covasa M. 2014. Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J Gastroenterol 20: 7878-7886. https://doi.org/10.3748/wjg.v20.i24.7878

Zińczuk J, Maciejczyk M, Zaręba K, Romaniuk W, Markowski A, Kędra B, Zalewska A, Pryczynicz A, Matowicka-Karna J, Guzińska-Ustymowicz K. 2019. Antioxidant barrier, redox status, and oxidative damage to biomolecules in patients with colorectal cancer. Can malondialdehyde and catalase be markers of colorectal cancer advancement?. Biomolecules 9: 637. https://doi.org/10.3390/biom9100637

Authors

Nouverra Nadya Putri
Slamet Budijanto
Endang Prangdimurti
prangdimurti@gmail.com (Primary Contact)
Bambang Pontjo
PutriN. N., BudijantoS., PrangdimurtiE., & PontjoB. (2023). Bekatul Beras Hitam Terfermentasi Memperbaiki Kondisi Kolon Mencit yang Diinduksi Senyawa Karsinogen Azoxymethane. Jurnal Teknologi Dan Industri Pangan, 34(1), 13-24. https://doi.org/10.6066/jtip.2023.34.1.13
Copyright and license info is not available

Article Details