PROFIL GELATINISASI DAN KOMPONEN ANTIOKSIDAN TEPUNG KETAN HITAM TERMODIFIKASI DENGAN ANNEALING
Abstract
This research aims to study and characterize the effect of the annealing conditions (temperature and heating duration) on the gelatinization profile and antioxidant components of annealing-modified black glutinous rice flour (ABGRF). This experiment used a 2x3 factorial design consisted of temperature factor (54 and 58°C) and heating duration factor (4, 5, and 6 hours) with 2 replications. Research results showed that both factors and their interactions significantly affected all parameters of the gelatinization profile and antioxidant component of ABGRF (except through viscosity). Compared to its native, ABGRF showed an increase in peak viscosity, through viscosity (except treatment 54°C:5 hours), peak time and pasting tem-perature, indicated ABGRF resistance improvement to the heating process. Generally, the temperature treatment increment increased breakdown, setback, and final viscosity, but the heating duration increment decreased those values. The variation of ABGRF gelatinization profiles increased the diversification potential of BGRF-based food products. Annealing caused an overall decrease in ABGRF antioxidant ability. ABGRF produced by 54°C:4 hours treatment had the highest amount of antioxidant components (total anthocyanins contents 103.78±2.24 mg C3GE/100 g, total phenolic compounds 241.65±1.98 mg GAE/100 g, DPPH 267.14± 3.23 mg AAE/100 g, FRAP 473.94±1.43 mg AAE/100 g), thus using it as ingredients in functional food is more recommended, especially as composite flour for bread and cake.
References
Afriyanti. 2017. Pemanfaatan residu brem sebagai bahan substitusi pembuatan “Arenia Sticky Rice”. J Ilmu Teknosains 3: 22-26.
BeMiller JN. 2018. Physical Modification of Starch. Di dalam: Starch in Food: Structure, Function and Applications: Second Edition. 223-253. Elsevier Inc. Cambridge (GB). DOI: 10.1016/B9 78-0-08-100868-3.00005-6.
Bobo-García G, Davidov-Pardo G, Arroqui C, Vírse-da P, Marín-Arroyo MR, Navarro M. 2015. Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. J Sci Food Agric 95: 204-209. DOI: 10.1002/jsfa.67 06.
Bolea CA, Grigore-Gurgu L, Aprodu I, Vizireanu C, Stănciuc N. 2019. Process-structure-function in association with the main bioactive of black rice flour sieving fractions. Foods 8: 131. DOI: 10.33 90/foods8040131.
Chen HH, Chang HC, Chen YSYK, Hung CL, Lin SY, Chen YSYK. 2016. An improved process for high nutrition of germinated brown rice pro-duction: Low-pressure plasma. Food Chem 191: 120-127. DOI: 10.1016/j.foodchem.2015. 01.083.
Goufo P, Trindade H. 2014. Rice antioxidants: phe-nolic acids, flavonoids, anthocyanins, proantho-cyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Sci Nutr 2: 75-104. DOI: 10.1002/fsn3.86.
Han JA, Lee BH, Lim WJ, Lim ST. 2005. Utilization of hydroxypropylated waxy rice and corn starches in Korean waxy rice cake to retard retrogradation. Cereal Chem 82: 88-92. DOI: 10.1094/CC-82-0088.
Itthivadhanapong P, Sangnark A. 2016. Effects of substitution of black glutinous rice flour for wheat flour on batter and cake properties. Int Food Res J 23: 1190-1198.
Kang MY, Rico CW, Lee SC. 2010. Physicochemical properties of eight popular glutinous rice va-rieties in Korea. Plant Prod Sci 13: 177-184. DOI: 10.1626/pps.13.177.
Kobayashi K, Nishimura M. 2007. Waxy rice mutants with unique processing properties for waxy rice breeding. Breeding Sci 57: 175-180. DOI: 10. 1270/jsbbs.57.175.
Kodama I, Shibata C, Fujita N, Ishikawa K, Taka-hashi T, Nakamura Y, Kawamoto T, Kato K, Sato K, Matsunami M, Akiyama Y. 2011. Starch properties of waxy rice cultivars influencing rice cake hardening. Japan J Food Eng 12: 157-162. DOI: 10.11301/jsfe.12.157.
Li Y, Ding G, Yokoyama W, Zhong F. 2018. Charac-teristics of annealed glutinous rice flour and its formation of fast-frozen dumplings. J Cereal Sci 79: 106-112. DOI: 10.1016/j.jcs.2017.09.016.
Mau JL, Lee CC, Chen YP, Lin SD. 2017. Physico-chemical, antioxidant and sensory characteris-tics of chiffon cake prepared with black rice as replacement for wheat flour. LWT-Food Sci Technol 75: 434-439. DOI: 10.1016/j.lwt.2016. 09.019.
Nindita DA, Kusnandar F, Budijanto S. 2018. Changes in antioxidant and physicochemical properties of Indonesian black rice flour (var. Banjarnegara and Bantul) during no-die ex-trusion cooking. J Teknol Industri Pangan 29: 164-174. DOI: 10.6066/jtip.2018.29.2.164.
Phetpornpaisan P, Tippayawat P, Jay M, Sutthanut K. 2014. A local Thai cultivar glutinous black rice bran: A source of functional compounds in immunomodulation, cell viability and collagen synthesis, and matrix metalloproteinase-2 and -9 inhibition. J Funct Foods 7: 650-661. DOI: 10.1016/j.jff.2013.12.020.
Ponnappan S, Thangavel A, Sahu O. 2017. Antho-cyanin, lutein, polyphenol contents and antioxi-dant activity of black, red and white pigmented rice varieties. Food Sci Nutr Stud 1: 3. DOI: 10. 22158/fsns.v1n1p43.
Šárka E, Dvořáček V. 2017. New processing and applications of waxy starch - a review. J Food Eng 206: 77-87. DOI: 10.1016/j.jfoodeng.2017. 03.006.
Sompong R, Siebenhandl-Ehn S, Linsberger-Martin G, Berghofer E. 2011. Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chem 124: 132-140. DOI: 10.1016/j.food chem.2010.05.115.
Suhartatik N, Karyantina M, Mustofa A, Cahyanto MN, Raharjo S, Rahayu ES. 2013. Stabilitas ekstrak antosianin beras ketan (Oryza sativa var. glutinosa) hitam selama proses pemanas-an dan penyimpanan. Agritech 33: 384-390.
Sutharut J, Sudarat J. 2012. Total anthocyanin con-tent and antioxidant activity of germinated colo-red rice. Int Food Res J 19: 215-221.
Thiranusornkij L, Thamnarathip P, Chandrachai A, Kuakpetoon D, Adisakwattana S. 2018. Phy-sicochemical properties of Hom Nil (Oryza sativa) rice flour as gluten free ingredient in bread. Foods 7: 159. DOI: 10.3390/foods71001 59.
Wang Shujun, Wang J, Wang Shaokang, Wang Shuo. 2017. Annealing improves paste viscosity and stability of starch. Food Hydrocolloid 62: 203-211. DOI: 10.1016/j.foodhyd.2016.08.006.
Yu L, Beta T. 2015. Identification and antioxidant properties of phenolic compounds during pro-duction of bread from purple wheat grains. Molecules 20: 15525-15549. DOI: 10.3390/mo lecules200915525.
Zahin M, Aqil F, Husain FM, Ahmad I. 2013. Anti-oxidant capacity and antimutagenic potential of Murraya koenigii. Biomed Res Int 2013: 1-10. DOI: 10.1155/2013/263509.
Zavareze EDR, Dias ARG. 2011. Impact of heat-moisture treatment and annealing in starches- a review. Carbohyd Polym 83: 317-328. DOI: 10.1016/j.carbpol.2010.08.064.
Zhang MW, Zhang RF, Zhang FX, Liu RH. 2010. Phenolic profiles and antioxidant activity of black rice bran of different commercially avail-able varieties. J Agric Food Chem 58: 7580-7587. DOI: 10.1021/jf1007665.
Zulfafamy KE, Ardiansyah, Budijanto S. 2018. Anti-oxidative properties and cytotoxic activity against colon cancer cell WiDr of Rhizopus ory-zae and Rhizopus oligosporus-fermented black rice bran extract. Curr Res Nutr Food Sci 6: 23-34. DOI: 10.12944/CRNFSJ.6.1.03.