SINTESIS NANOPARTIKEL PERAK (NPAg) DENGAN BIOREDUKTOR EKSTRAK BIJI JARAK PAGAR DAN KAJIAN AKTIVITAS ANTIBAKTERINYA
Abstract
The redox analysis as indicated by a change in color from yellow to reddish-brown was measured at the optimum wavelength of 405 nm with the highest redox result of 480 nm obtained in the NPAg-S sample. The optimal absorption wavelength changes according to the characteristics of the NPAg produced, but is generally in the range of 400-500 nm. Analysis of the active groups with the FTIR instrument showed active groups (OH, CH aldehyde, vibrations of CN bonds in the amine group, amide I groups from proteins, and CO double bonds in the 4000-1500 cm-1) zone. Additionally, in the identification zone 1500-600 cm-1 the formation of CN bond vibrations and the presence of an amide I group from the protein was found. Photographs at 10.000 and 15.000x magnification showed that the morphology of the distribution of NPAg in the jatropha seed extract solution was polydisperse and in the form of fibrous balls with non-uniform particles and tended to agglomerate. The distribution and size of the particles measured using the Particle Size Analyzer (PSA) instrument showed that the particle size ranged from 33-116 nm. NPAg-S samples at two concentrations (1 and 2%) showed inhibitory activity for all types of Gram positive and Gram negative bacteria. Analysis of the particle size distribution using PSA showed that the particle size of the NPAg-S sample was 33.8 nm, which was smaller than the NPAg-K sample of 44.8 nm. Antibacterial activity is strongly influenced by the particle size of a sample. Small size silver nanoparticles have a large surface area to interact with bacteria as compared to large silver nanoparticles, thus they can provide a greater antibacterial effect.
References
Ahmed S, Saifullah, Ahmad M, Swami BL, Ikram S. 2016. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res and Appl Sci 9: 1-7. DOI: 10.1016/j. jrras.2015.06.006.
Alshehri MA, Aziz AT, Trivedi S, Alanazi NA, Panneerselvam C, Baeshen R, Alatawi A. 2020. One-Step Synthesis of Ag nanoparticles using aqueous extracts from sundarbans mangroves revealed high toxicity on major mosquito vec-tors and microbial pathogens. J Cluster Sci 31: 177–84. DOI: 10.1007/s10876-019-01631-7.
Balachandran YL, Girijia S, Selvakumar R, Tongpim S, Cutleb AC, Arno CG, Suriyanarayanan S. 2013. Differently environment stable bio-silver nanoparticles: Study on their optical enhancing and antibacterial properties. Plos One 8: e77046. DOI: 10.1371/journal.pone.0077043.
Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity - a review. J Pharm Anal 6: 71-79. DOI: 10.1016/j. jpha.2015.11.005.
Banerjee P, Satapathy M, Mukhopahayay, Das P. 2014. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresource Bioproc 1: 1-10. DOI: 10.1186/s40643-014-0003-y.
Dalir SJB, Djahaniani H, Nabati F, Hekmati M. 2020. Characterization and the evaluation of anti-microbial activities of silver nanoparticles bio-synthesized from Carya illinoinensis leaf extract. Heliyon 6: 1-7. DOI: 10.1016/j.heliyon. 2020.e03624.
Devaraj P, Kumari P, Aarti C, Rengnathan A. 2013. Synthesis and characterization of silver nano-particles using Cannonball leaves and their cytotoxic activity againts MCF-7 cell line. J Nanotechnol 2013: 1-5. DOI: 10.1155/2013/598 328.
Esmaile F, Hassan K, Hassan AP. 2020. Charac-terization and antibacterial activity of silver nanoparticles green synthesized using Zizipho-ra clinopodioides extract. Environ Nanotechnol, Monitoring Manage 14: 100303. DOI: 10.1016/j. enmm.2020.100303.
Firdhouse MJ, Ramadas LP, Shubashini S. 2012. Novel synthesis of silver nanoparticles using leaf ethanol extract of Pisoniagrandis (R. Br). Der Pharma Chemica 4: 2320-2326.
Guzmán MG, Dille J, Godet S. 2009. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int J Chem Biomol Eng 2: 104-111.
Ibrahim HMM. 2015. Green synthesis and charac-terization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Ra-diat Res Appl Sci 8: 265-275. DOI: 10.1016/j. jrras.2015.01.007.
Jagtap UB, Bapat VA. 2013. Green synthesis of silver nanoparticles using Artocarpus hetero-phyllus Lam. seed extract and its antibacterial activity. Ind Crop Prod 46: 132-137. DOI: 10. 1016/j.indcrop.2013.01.019.
Jyoti K, Baunthiyal M, Singh A. 2016. Characteri-zation of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effect with antibiotics. J Radiat Res Appl Sci 9: 217-227. DOI: 10.1016/j.jrras.2015.10.002.
Kasim S, Taba P, Ruslan, Rumianto. 2020. Sinte-sis nanopartikel perak menggunakan ekstrak daun eceng gondok (Eichornia crassipes) seba-gai bioreduktor. Kovalen: J Riset Kimia 6: 126-133. DOI: 10.22487/kovalen.2020.v6.i2.15137.
Leela A, Vivekanandan M. 2008. Tapping the unex-ploited plant resources for the synthesis of silver nanoparticles. Afr J Biotechnol 7: 3162-3165.
Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvares PJJ. 2008. Antimicrobial nanoma-terials for water disinfection and microbial con-trol: Potential applications and implications. Water Res 42: 4591-4602. DOI: 10.1016/j. watres.2008.08.015.
Martínez A, Mijangos GE, Romero-Ibarra IC, Hernández-Altamirano R HA, Mena-Cervantes VY. 2019. In-situ transesterification of Jatropha curcas L. seeds using homogeneous and hete-rogeneous basic catalysts. Fuel 235: 277-287. DOI: 10.1016/j.fuel.2018.07.082.
Mason C, Vivekanandhan S, Misra M, Mohanty AK. 2012. Switchgrass (Panicum virgatum) extract mediated green synthesis of silver nanopar-ticles. World J Nano Sci Eng 2: 47-52. DOI: 10.4236/wjnse.2012.22008.
Masakke Y, Sulfikar, Rasyid M. 2014. Biosintesis partikel-nano perak menggunakan ekstrak me-tanol daun manggis (Garcinia mangostana L.). J Sainsmat 4: 28-41.
Muzamil M, Khalid N, Aziz MD, Abbas SA. 2014. Synthesis of silver nanoparticles by silver salt reduction and its characterization. IOP Con-ference Series Mater Sci Eng 60: 012034. International Symposium on Advanced Ma-terials (ISAM 2013) 23-27 September 2013, Islamabad, Pakistan. DOI: 10.1088/1757-899X/ 60/1/012034.
Nilavukkarasi M, Vijayakumar S, Kumar SP. 2020. Biological synthesis and characterization of silver nanoparticles with Capparis zeylanica L. leaf extract for potent antimicrobial and anti proliferation efficiency. Mater Sci for Energ Technol 3: 371-376. DOI: 10.1016/j.mset.2020. 02.008.
Pal S, Tak YK, Song JM. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-Negative bacterium Esche-richia coli. Appl Environ Microbiol 73: 1712-1720. DOI: 10.1128/AEM.02218-06.
Rao B, Tang R-C. 2017. Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract. Adv Nat Sci: Nanosci Nanotechnol 8: 1-8. DOI: 10.1088/2043-6254/aa5983.
Renugadevi K, Aswini RV. 2012. Microwave irra-diation assisted synthesis of silver nanoparticle using Azadirachta indica leaf extract as a reducing agent and in vitro evaluation of its antibacterial and anticancer activity. Int J Nanomater Biostructure 2: 5-10.
Sari PI, Firdaus ML, Elvia R. 2017. Pembuatan nanopartikel perak (NPP) dengan bioreduktor ekstrak buah Muntingia calabura L untuk analisis logam merkuri. J Pendidikan Ilmu Kimia 1: 20-26. DOI: 10.33369/atp.v1i1.2708.
Šileikaitė A, Prosyčevas I, Puišo J, Juraitis A, Guobienė A. 2006. Analysis of silver nano-particles produced by chemical reduction of silver salt solution. Mater Sci 12: 287-291 .
Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C, L Mulfinger L. 2007. Synthesis and study of silver nanoparticles. J Chem Educ 84: 322-325. DOI: 10.1021/ed084p 322.
Taba P, Parmitha NY, Kasim S. 2019. Sintesis nanopartikel perak menggunakan ekstrak daun salam (Syzgium polyanthum) sebagai biore-duktor dan uji aktivitasnya sebagai antioksidan. Indonesian J Chem Res 7: 51-60. DOI: 10.3059 8//ijcr.2019.7-ptb.
Umoren SA, Obot IB, Gasem ZM. 2014. Green synthesis and characterization of silver nano-particles using red apple (Malus domestica) fruit extract at room temperature. J Mater Environ Sci 5: 907-914.
Yadav A, Kaushik A, Joshi A. 2018. Green synthesis of silver nanoparticles using Ocimum sanctum L. and Ocimum americanum L. for their anti-bacterial potential. Int J Life Sci Pharm Res 8: 42-49.