ALTERNATIVE OPTICAL METHODS FOR QUALITATIVE DETECTION OF VITAMIN B6 AND B12 OF BANANA
Abstract
Bananas are known to contain fiber and vitamins essential for human body. Thus, the ability to detect these of vitamin in bananas is crucial. Information in the vitamin content of can affect procedures for harverst and post-harvest process. Methods to determine the nutrition content of foods are usually carried out using High Performance Liquid Chromatography (HPLC). However, this method requires complex sample preparation and chemical reaction processes. Due to this weakness, alternative techniques are needed to detect vitamin in simple ways. In this study, a simple, easy and fast methods to determine the vitamin content of banana was developed. Using reflectance and photoluminence spectroscopy, the vitamin of bananas from five different species were able to be identified. From the reflectance spectra results, two peaks were observed, the first peak at a wavelength of 325 nm is the absorption peak of vitamin B6 and the second peak at 450 nm is the absorption peak of vitamin B12. From the photoluminence spectra using excitation wavelength at 325 nm, an emission peak was found at wavelength 450 nm which is the peak emission from vitamin B6. These results proved that by using the methods proposed, the detection of vitamins in bananas can be done in an easy and simple ways.
References
Bhat R, Paliyath G. 2016. Fruits of Tropical Climates: Biodiversity and Dietary Importance. In: Caballero B, Finglas PM, Toldrá F, eds. Encyclopedia of Food and Health. 138-143. Academic Press, Oxford. DOI: 10.1016/B978-0-12-384947-2.00337-8.
Bilski P, Li MY, Ehrenshaft M, Daub ME, Chignell CF. 2000. Vitamin B6 (pyridoxine) and its deri-vatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem Photobiol 71: 129-134. DOI: 10.1562/0031-86 55(2000)071<0129:SIPVBP>2.0.CO;2.
Cen H, Lu R, Mendoza F, Beaudry RM. 2013. Re-lationship of the optical absorption and scat-tering properties with mechanical and structural properties of apple tissue. Postharvest Biol Tec 85: 30-38. DOI: 10.1016/j.postharvbio.2013.04. 014.
Chen M, Schliep, Willows RD, Cai Z-L, Neilan BA, Scheer H. 2010. A red-shifted chlorophyll. Science 32: 1318-1319. DOI: 10.1126/science. 1191127.
Davey MW, Saeys W, Hof E, Ramon H, Swennen, RL, Keulemans J. 2009. Application of visible and near-infrared reflectance spectroscopy (Vis/NIRS) to determine carotenoid contents in banana (Musa spp.) fruit pulp. J Agric Food Chem 57: 1742-1751. DOI: 10.1021/jf803137d.
Gundogdu M, Muradoglu F, Sensoy RIG, Yilmaz H. 2011. Determination of fruit chemical properties of Morus nigra L, Morus alba L, Morus rubra L by HPLC. Sci Hortic-Amsterdam 132: 37-41. DOI: 10.1016/j.scienta.2011.09.035.
Hashim N, Janius RB, Baranyai L, Rahman RA, Osman A, Zude M. 2012. Kinetic model for co-lour changes in bananas during the appearance of chilling injury symptomps. Food Bioprocess Tech 5: 2952-2963. DOI: 10.1007/s11947-011-0646-z
Hu D, Fu X, Wang A, Ying Y. 2015. Measurement methods for optical absorption and scattering properties of fruits and vegetables. Am Soc Agric Biologic Eng 58: 1387-1401. DOI: 10.13 031/trans.58.11103.
Huang Y, Lu R, Hu D, Chen K. 2018. Quality assessment of tomato fruit by optical absor-ption and scattering properties. Postharvest Biol Tec 143: 78-85. DOI: 10.1016/j.postharvbio. 2018.04.016
Jaiswal P, Jha SN, Bharadwaj R. 2012. Non-destructive prediction of quality of intact banana using spectroscopy. Sci Hortic-Amsterdam 135: 14-22. DOI: 10.1016/j.scienta.2011.11.021.
Klimczak I, Gliszczyńska-Świgło A. 2015. Compari-son of UPLC and HPLC methods for determina-tion of vitamin C. Food Chem 175: 100-105. DOI: 10.1016/j.foodchem.2014.11.104.
Koyuncu MA, Tuba D. 2010. Determination of vita-min C and organic acid changes in strawberry by HPLC during cold storage. Notulae Botani-cae Horti Agrobotanici Cluj-Napoca 38: 95-98.
Kumoro AC, Alhanif M, Wardhani DH. 2020. A critical review on tropical fruits seeds as pros-pective sources of nutritional and bioactive compounds for functional foods development: A case of indonesian exotic fruits. Int J Food Sci 2020: 1-15. DOI: 10.1155/2020/4051475.
Lana MM, Hogenkamp M, Koehorst RBM. 2006. Application of Kubelka-Munk analysis to study of translucency in fresh-cut tomato. Innov Food Sci Emerg Technol 7: 302-308. DOI: 10.1016/j.i fset.2006.04.001.
Lu R, Ariana DP, Cen H. 2011. Optical absorption and scattering properties of normal and defective pickling cucumbers for 700-1000 Nm. Sens Instrument Food Qual Safety 5: 51-56. DOI: 10.1007/s11694-011-9108-6.
Martínez-Valdivieso D, Font R, Blanco-Díaz MT, Moreno-Rojas JM, Gómez P, Alonso-Moraga A, Río-Celestinoa MD. 2014. Application of near-infrared reflectance spectroscopy for predictiing carotenoid content in summer squash fruit. Comput Electron Agr 108: 71-79. DOI: 10.1016/ j.compag.2014.07.003.
Massicotte P, Markager S. 2016. Using a Gaussian decomposition approach to model absorption spectra of chromophoric dissolved organic matter. Mar Chem 180: 24-32. DOI: 10.1016/j. marchem.2016.01.008.
Mireei SA, Mohtasebi SS, Massudi R, Rafiee S, Arabanian AS, Berardinelli A. 2010. Non-des-tructive measurement of moisture and soluble solids content of mazafati date fruit by NIR spectroscopy. Australian J Crop Sc 4: 175-79.
Müller T, Kräutler B. 2011. Chlorophyll breakdown as seen in bananas: Sign of aging and ripening-a mini-review. Gerontology 57: 521-527. DOI: 10.1159/000321877
Qin J, Lu R. 2007. Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging. Appl Spectrosc 61: 388-396. DOI: 10.1366/0003702077804661 90.
Rowe PI, Künnemeyer R, McGlone A, Talele S, Martinsen P, Seelye A. 2014. Relationship between tissue firmness and optical properties of ‘Royal Gala’ apples from 400 to 1050 Nm.” Postharvest Biol Tec 94: 89-96. DOI: 10.1016/ j.postharvbio.2014.03.007.
Roy A, Ramasubramaniam R, Gaonkar HA. 2012. Empirical relationship between Kubelka-Munk and radiative transfer coefficients for extracting optical parameters of tissues in diffusive and nondiffusive regimes. J Biomedical Optics 17: 115006. DOI: 10.1117/1.JBO.17.11.115006.
Sampson HA, Aceves S, Bock SA, James J, Jones S, Lang D, Nadeau K, Nowak-Wegrzyn A, Oppenheimer J, Perry TT, Randolph C, Sicherer SH, Simon RA, Vickery BP, Wood R. 2014. Food allergy: A Practice parameter update-2014. J Allergy Clinical Immun 134: 1016-1025. DOI: 10.1016/j.jaci.2014.05.013.
Spínola V, Eulogio J. Llorent-Martínez EJ, Castilho PC. 2014. Determination of vitamin C in foods: current state of method validation. J Chro-matogr A 1369: 2-17. DOI: 10.1016/j.chroma. 2014.09.087.
Subedi PP, Walsh KB. 2011. Assessment of sugar and starch in intact banana and mango fruit by SWNIR spectroscopy. Postharvest Biol Tec 62: 238-245. DOI: 10.1016/j.postharvbio.2011.06. 014.
Tiessen A. 2018. The fluorescent blue glow of banana fruits is not due to symplasmic plastidial catabolism but arises from insoluble phenols estherified to the cell wall. Plant Science: 275, 75-83. DOI: 10.1016/j.plantsci.2018.07.006.
Wang H, Peng J, Xie C, Bao Y, He Y. 2015. Fruit quality evaluation using spectroscopy techno-logy-a review. Sensor (Switzerland) 15: 11889-11927. DOI: 10.3390/s150511889.
Zerbini PE, Vanoli M, Rizzolo A, Grassi M, de Azevedo Pimentel RM, Spinelli L, Torricelli A. 2015. Optical properties, ethylene production and softening in mango fruit. Postharvest Biol Tec 101: 58-65. DOI: 10.1016/j.postharvbio. 2014.11.008.
Zhu Q, He C, Lu R, Mendoza F, Cen H. 2015. Ripeness evaluation of ‘sun bright’ tomato using optical absorption and scattering properties. Postharvest Biol Tec 103: 27-34. DOI: 10. 1016/j.postharvbio.2015.02.007.