Remediation Technology for Heavy Metal-Contaminated Soil on Copper Post-Mining Land Reclamation

  • Putri Oktariani IPB University
  • Suwardi Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, IPB University
  • Hermanu Widjaja Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, IPB University
  • Dyah Tjahyandari Suryaningtyas Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, IPB University
  • Aulya Putri Pusat Studi Reklamasi Tambang, IPB University

Abstract

Indonesia is a country with very high mineral reserves. Copper is one of the most important minerals found and produced in Indonesia. According to data from USGS in 2023, Indonesia is the world's seventh-largest copper producer. Copper mining activities primarily utilize open-pit mining techniques compared to underground mining techniques. Open-pit mining techniques lead to environmental damage, including land degradation, erosion, deforestation, ecosystem destruction, and soil, air, and water pollution due to acid mine drainage. The aim of this research is to provide remediation technologies recommendations for heavy metal-contaminated soil on copper post-mining land. Mine reclamation plays a crucial role in addressing various issues on post-mining lands. Waste dump area is one of the focus areas in reclamation activities that used as a place to store non-valuable materials. Waste dump area typically contain heavy metals that are harmful to the environment. High concentrations of heavy metals in the soil can make it toxic, which then has an impact on reducing soil quality and poisoning plants. Selecting suitable ameliorants and hyperaccumulator plants that are capable to reduce heavy metal toxicity is the key to successful mine reclamation. Zeolite ameliorant can reduce heavy metal content in the soil by increasing adsorption complexes, while dolomite can reduce heavy metal content in the soil by increasing soil pH. Phytoremediation by using hyperaccumulator plants also can reduce soil toxicity through destruction, inactivation, or immobilization of heavy metals into harmless forms.

References

Aanisa, N. A. I., Rahmawati, R., Tasiman, B. H. A., & Astuti, Y. (2023). Analisis Kualitas dan Tingkat Pencemaran Limbah B3 Terlarut di Aliran Sungai Cideng. Jurnal Ilmu Lingkungan, 22(1), 215–227.

Azizah, M., & Maslahat, M. (2021). Kandungan Logam Berat Timbal (Pb), Kadmium (Cd), dan Merkuri (Hg) di dalam Tubuh Ikan Wader (Barbodes binotatus) dan Air Sungai Cikaniki, Kabupaten Bogor. Limnotek : perairan darat tropis di Indonesia, 28(2). https://doi.org/10.14203/limnotek.v28i2.331

Azizi, M., Faz, A., Zornoza, R., Martinez, S., & Acosta, J. A. (2023). Phytoremediation Potential of Native Plant Species in Mine Soils Polluted by Metal(loid)s and Rare Earth Elements. Plants, 12(6), 1219. https://doi.org/10.3390/plants12061219

Balai Pengujian Standar Instrumen Tanah dan Pupuk. (2023). Petunjuk Teknis: Analisis Kimia Tanah, Tanaman, Air, dan Pupuk (3rd ed.). Balai Penelitian Tanah.

Belviso, C. (2020). Zeolite for Potential Toxic Metal Uptake from Contaminated Soil: A Brief Review. Processes, 8(7), 820. https://doi.org/10.3390/pr8070820

Darlis, V. V., Putriani, C. N., Yoza, D., & Pebriandi, P. (2023). Potensi dan Pertumbuhan Beberapa Jenis Tanaman dalam Penyerapan Logam Berat Timbal (Pb) pada Media Tanah Bekas Tambang Timah Desa Siabu Kecamatan Salo Kabupaten Kampar. Journal of Tropical Silviculture, 14(03), Article 03. https://doi.org/10.29244/j-siltrop.14.03.191-194

Derakhshan Nejad, Z., Jung, M. C., & Kim, K.-H. (2018). Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environmental Geochemistry and Health, 40(3), 927–953. https://doi.org/10.1007/s10653-017-9964-z

Dusengemungu, L., Mubemba, B., & Gwanama, C. (2022). Evaluation of heavy metal contamination in copper mine tailing soils of Kitwe and Mufulira, Zambia, for reclamation prospects. Scientific Reports, 12(1), Article 1. https://doi.org/10.1038/s41598-022-15458-2

Edokpayi, J. N., Makungo, R., Mathivha, F., Rivers, N., Volenzo, T., & O. Odiyo, J. (2020). Chapter 5 - Influence of global climate change on water resources in South Africa: Toward an adaptive management approach. In P. Singh, Y. Milshina, K. Tian, D. Gusain, & J. P. Bassin (Eds.), Water Conservation and Wastewater Treatment in BRICS Nations (pp. 83–115). Elsevier. https://doi.org/10.1016/B978-0-12-818339-7.00005-9

Golia, E. E. (2023). The impact of heavy metal contamination on soil quality and plant nutrition. Sustainable management of moderate contaminated agricultural and urban soils, using low cost materials and promoting circular economy. Sustainable Chemistry and Pharmacy, 33, 101046. https://doi.org/10.1016/j.scp.2023.101046

Hardianti, S., & Halim, M. S. (2021). Perencanaan desain disposal area serta sequence timbunan overburden guna mengakomodasi produksi bulan juli tahun 2020 di PT X, Kabupaten Kutai Barat. Jurnal Pertambangan, 5(2), Article 2. https://doi.org/10.36706/jp.v5i2.185

Hariyoto, F. (2021). Akumulasi Logam Berat Timbal (Pb), Kadmium (Cd), Seng (Zn) Dan Merkuri (Hg) Di Perairan Beserta Dampaknya Bagi Produk Perikanan Dan Kesehatan Manusia. Vol. 18, 39–46.

Hatar, H., Abd Rahim, S., Razi, W., & Sahrani, F. (2013). Heavy Metals Content In Acid Mine Drainage at Abandoned and Active Mining Area. AIP Conference Proceedings, 1571, 646. https://doi.org/10.1063/1.4858727

Herlina, A., Handayani, H. E., & Iskandar, H. (2014). Pengaruh Fly Ash Dan Kapur Tohor Pada Netralisasi Air Asam Tambang Terhadap Kualitas Air Asam Tambang (Ph, Fe & Mn)di Iup Tambang Air Laya Pt.bukit Asam (Persero),tbk. Jurnal Ilmu Teknik Sriwijaya, 2(2), 102629. https://www.neliti.com/id/publications/102629/

Hidayati, N. (2005). Fitoremediasi dan Potensi Tumbuhan Hiperakumulator. HAYATI Journal of Biosciences, 12(1), 35–40. https://doi.org/10.1016/S1978-3019(16)30321-7

Iatan, E.-L. (2021). Chapter 16—Gold mining industry influence on the environment and possible phytoremediation applications. In K. Bauddh, J. Korstad, & P. Sharma (Eds.), Phytorestoration of Abandoned Mining and Oil Drilling Sites (pp. 373–408). Elsevier. https://doi.org/10.1016/B978-0-12-821200-4.00007-8

Istichori, E. (2015). Kemampuan Zeolit Untuk Menurunkan Konsentrasi Ion Besi Dan Mangan Dalam Limbah Cair Tambang. http://repository.ipb.ac.id/handle/123456789/79714

Juhriah, J., & Alam, M. (2016). Fitoremediasi Logam Berat Merkuri (Hg)pada Tanah Dengan Tanaman Celosia Plumosa (Voss) Burv. Jurnal Administrasi dan Kebijakan Kesehatan Indonesia, 1(1), 110300. https://doi.org/10.20956/bioma.v1i1.1349

Kementerian ESDM. (2020). Booklet Tambang Tembaga 2020. Kementerian Energi dan Sumber Daya Mineral. https://www.esdm.go.id/id/booklet/booklet-tambang-tembaga-2020

Khoshraftar, Z., Masoumi, H., & Ghaemi, A. (2023). An insight into the potential of dolomite powder as a sorbent in the elimination of heavy metals: A review. Case Studies in Chemical and Environmental Engineering, 7, 100276. https://doi.org/10.1016/j.cscee.2022.100276

Mahardika, G. (2018). Fitoekstraksi logam berat tembaga (Cu2+) menggunakan tanaman bunga matahari (helianthus annuus). SKRIPSI-2017. http://repository.trisakti.ac.id/usaktiana/index.php/home/detail/detail_koleksi/0/SKR/judul/00000000000000091643/0

Malayeri, B., Chehregani Rad, A., & Yousefi, N. (2008). Identification of the Hyper Accumulator Plants in Copper and Iron Mine in Iran. Pakistan Journal of Biological Sciences: PJBS, 11, 490–492. https://doi.org/10.3923/pjbs.2008.490.492

Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of Mine Tailings in Arid and Semiarid Environments—An Emerging Remediation Technology. Environmental Health Perspectives, 116(3), 278–283. https://doi.org/10.1289/ehp.10608

Mujiyanti, D. R., Irawati, U., Nurmasari, R., & Risna, M. (2016). PENENTUAN KANDUNGAN TIMBAL, TEMBAGA DALAM AIR-SEDIMEN PADA SALAH SATU LUBANG TAMBANG INTAN DI KELURAHAN SUNGAI TIUNG KOTA BANJARBARU. Jurnal Berkala Ilmiah Sains Dan Terapan Kimia, 8(2), Article 2. https://doi.org/10.20527/jstk.v8i2.2140

Napitupulu, L. S., & Purwanti, I. F. (2022). Kajian Fitostabilisasi Limbah Hasil Tambang Tembaga (Tailing). Jurnal Teknik ITS, 11(3), F99–F104. https://doi.org/10.12962/j23373539.v11i3.94358

Nuriadi, N., Napitupulu, M., & Rahman, N. (2013). Analisis Logam Tembaga (Cu) pada Buangan Limbah Tromol (Tailing) Pertambangan Poboya. Jurnal Akademika Kimia, 2(2), 90–96. https://www.neliti.com/id/publications/224107/

Paradise, M., & Nurkhamim, N. (2020). Penerapan Konsep Waste Hierarchy Pada Kegiatan Pengolahan Bijih Tembaga-Emas PT. Freeport Indonesia di Mimika Papua. Prosiding Seminar Teknologi Kebumian dan Kelautan (SEMITAN), 2(1), 171–176. https://doi.org/10.31284/j.semitan.2020.1066

Prasad, M. N. V. (2024). Mulberry (Morus spp.) for phytostabilization of coal mine overburden: Co-generation of economic products. In M. N. V. Prasad (Ed.), Bioremediation and Bioeconomy (Second Edition) (pp. 419–432). Elsevier. https://doi.org/10.1016/B978-0-443-16120-9.00007-8

Puradyatmika, P., Prewitt, J. M., Fourie, A. B., & Tibbett, M. (2012). Tailings reclamation trials at PT Freeport Indonesia in Mimika, Papua, Indonesia. 173–186. https://doi.org/10.36487/ACG_rep/1208_17_Puradyatmika

Pusdi Reklatam IPB. (2021). Pemantauan Kualitas Tanah di Areal Reklamasi Batu Hijau PT. Amman Mineral Nusa Tenggara, Nusa Tenggara Barat. Pusat Studi Reklamasi Tambang IPB.

Rahman, H. A., Akbar, M. F., & Pramudita, R. D. (2020). BIOEKSTRAKSI TEMBAGA DARI AIR ASAM TAMBANG DENGAN METODE PHYTOMINING MENGGUNAKAN TANAMAN EICHHORNIA CRASSIPES (MART.). Prosiding Temu Profesi Tahunan PERHAPI, 0, Article 0. https://www.prosiding.perhapi.or.id/index.php/prosiding/article/view/199

Roulia, M., & Vasilatos, C. (2023). Using Natural and Synthetic Zeolites for Mine Soils Clean-Up. Materials Proceedings, 15(1), Article 1. https://doi.org/10.3390/materproc2023015020

Saeni, M. S. (1989). Kimia Lingkungan. Pusat Penelitian Ilmu Hayati.

Sefti, A., Nursanto, E., & Ernawati, R. (2024). Overview Pengelolaan Air Asam Tambang Dengan Menggunakan Zeolit. Jurnal Mineral, Energi, dan Lingkungan, 7(2), Article 2. https://doi.org/10.31315/jmel.v7i2.11316

Setiadi, Y., Salim, F., & Silmi, Y. (2014). Seleksi Adaptasi Jenis Tanaman pada Tanah Tercemar Minyak Bumi. Jurnal Silvikultur Tropika, 5(3), 160–166.

Siallagan, D., & Suwardi. (2003). Pengaruh Zeolit Terhadap Logam Berat dan Bahan Kimia Terlarut pada Air Tanah: Studi Kasus Areal Permukiman Darmaga Bogor Jawa Barat. Jurnal Zeolit Indonesia, 2(1), 31–36.

Sukandarrumidi. (2016). Geologi Mineral Logam. Gadjah Mada University Press. https://ugmpress.ugm.ac.id/id/product/geologi/geologi-mineral-logam

Takam Tiamgne, X., Kalaba, F. K., & Nyirenda, V. R. (2021). Land use and cover change dynamics in Zambia’s Solwezi copper mining district. Scientific African, 14, e01007. https://doi.org/10.1016/j.sciaf.2021.e01007

Tampubolon, O. F. R., Ismanto, A., Suryoputro, A. A. D., Muslim, M., & Indrayanti, E. (2021). Simulasi Pola Sebaran Logam Berat Tembaga (Cu) di Perairan Kota Pekalongan. Indonesian Journal of Oceanography, 3(2), 174–188. https://doi.org/10.14710/ijoce.v3i2.11164

Tangviroon, P., Noto, K., Igarashi, T., Kawashima, T., Ito, M., Sato, T., Mufalo, W., Chirwa, M., Nyambe, I., Nakata, H., Nakayama, S., & Ishizuka, M. (2020). Immobilization of Lead and Zinc Leached from Mining Residual Materials in Kabwe, Zambia: Possibility of Chemical Immobilization by Dolomite, Calcined Dolomite, and Magnesium Oxide. Minerals, 10(9), Article 9. https://doi.org/10.3390/min10090763

Tsao, D. T. (2003). Phytoremediation Advance in Biochemical Engineering Biotechnology. Springer. https://doi.org/10.1007/3-540-45991-X_1

Vrînceanu, N. O., Motelică, D. M., Dumitru, M., Calciu, I., Tănase, V., & Preda, M. (2019). Assessment of using bentonite, dolomite, natural zeolite and manure for the immobilization of heavy metals in a contaminated soil: The Copșa Mică case study (Romania). CATENA, 176, 336–342. https://doi.org/10.1016/j.catena.2019.01.015

Wilson-Corral, V., Anderson, C., Rodriguez-Lopez, M., Arenas-Vargas, M., & Lopez-Perez, J. (2011). Phytoextraction of gold and copper from mine tailings with Helianthus annuus L. and Kalanchoe serrata L. Minerals Engineering, 24(13), 1488–1494. https://doi.org/10.1016/j.mineng.2011.07.014

Zhao, P., Chen, J., Liu, T., Wang, Q., Wu, Z., & Liang, S. (2023). Heavy metal pollution and risk assessment of tailings in one low-grade copper sulfide mine. Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1132268

Published
2024-06-19
Section
Articles