Reclamation Technology for Coal Post-Mining Land Contaminated by Acid Mine Drainage (AMD)
Abstract
Indonesia, as a major coal producer and exporter, produced 775.2 million tons of coal in 2023, with mining activities concentrated in Kalimantan and Sumatera. Indonesia also holds 37.6 billion tons of coal reserves, ranking sixth globally. However, decades of coal extraction have led to severe environmental degradation, particularly through the formation of acid mine drainage (AMD). AMD is a highly acidic pollutant characterized by low pH and elevated concentrations of dissolved metals, formed when pyrite (FeS₂) and other sulfide minerals exposed during mining, oxidize upon contact with oxygen and water. This process significantly threatens water quality, soil health, and overall ecosystem integrity. To mitigate the environmental impacts of AMD, effective reclamation technologies are crucial. These include the application of ameliorants, the implementation of AMD management systems, and phytoremediation using hyperaccumulator plants. These methods aim to neutralize acidity, reduce metal concentrations, and restore ecosystem functions in coal post-mining land. The study applies a descriptive-analytical methodology to evaluate reclamation strategies implemented both in Indonesia and globally. The findings provide recommendations for effective and sustainable reclamation practices to mitigate AMD, rehabilitate degraded land, and ensure long-term environmental sustainability. Synthetic zeolite shows higher effectiveness in heavy metal adsorption, while natural zeolite is more cost-effective and sustainable. In managing AMD, the application of active and passive technologies combination should be adjusted to the specific characteristics of the site. Phytoremediation using hyperaccumulator plants has proven effective in reducing heavy metal contamination in both soil and water, by considering the type of contaminants and their absorption mediums
References
Aanisa, N. A. I., Rahmawati, R., Tasiman, B. H. A., & Astuti, Y. (2023). Analisis kualitas dan tingkat pencemaran limbah b3 terlarut di aliran Sungai Cideng. Jurnal Ilmu Lingkungan, 22(1), 215–227.
Bhat, S. A., Bashir, O., Ul Haq, S. A., Amin, T., Rafiq, A., Ali, M., Américo-Pinheiro, J. H. P., & Sher, F. (2022). Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere, 303, 134788. https://doi.org/10.1016/j.chemosphere.2022.134788.
Bortoloti, G. A., & Baron, D. (2022). Phytoremediation of toxic heavy metals by Brassica plants: A biochemical and physiological approach. Environmental Advances, 8, 100204. https://doi.org/10.1016/j.envadv.2022.100204.
BPS. (2024). Ekspor Batu Bara Menurut Negara Tujuan Utama, 2012-2023—Tabel Statistik—Badan Pusat Statistik Indonesia. https://www.bps.go.id/id/statistics-table/1/MTAzNCMx/ekspor-batu-bara-menurut-negara-tujuan-utama--2012-2022.html.
Cao, Y., Tan, Q., Zhang, F., Ma, C., Xiao, J., & Chen, G. (2022). Phytoremediation potential evaluation of multiple Salix clones for heavy metals (Cd, Zn and Pb) in flooded soils. Science of The Total Environment, 813, 152482. https://doi.org/10.1016/j.scitotenv.2021.152482.
Chang, F.-C., Ko, C.-H., Tsai, M.-J., Wang, Y.-N., & Chung, C.-Y. (2014). Phytoremediation of heavy metal contaminated soil by Jatropha curcas. Ecotoxicology (London, England), 23(10), 1969–1978. https://doi.org/10.1007/s10646-014-1343-2.
Chehregani, A., Mohsenzade, F., & Vaezi, F. (2009). Introducing a new metal accumulator plant and the evaluation of its ability in removing heavy metals. Toxicological & Environmental Chemistry, 91(6), 1105–1114. https://doi.org/10.1080/02772240802541403.
Cheng, Y., Yuan, J., Wang, G., Hu, Z., Luo, W., Zhao, X., Guo, Y., Ji, X., Hu, W., & Li, M. (2024). Phosphate-solubilizing bacteria improve the antioxidant enzyme activity of Potamogeton crispus L. and enhance the remediation effect on Cd-contaminated sediment. Journal of Hazardous Materials, 470, 134305. https://doi.org/10.1016/j.jhazmat.2024.134305.
DeGroote, K., Mccartha, G., & Pollard, A. (2017). Interactions of the manganese hyperaccumulator Phytolacca americana L. with soil pH and phosphate. Ecological Research, 33. https://doi.org/10.1007/s11284-017-1547-z.
Dorsey, B. L., Haevermans, T., Aubriot, X., Morawetz, J. J., Riina, R., Steinmann, V. W., & Berry, P. E. (2013). Phylogenetics, morphological evolution, and classification of Euphorbia subgenus Euphorbia. TAXON, 62(2), 291–315. https://doi.org/10.12705/622.1.
ESDM. (2020). Kementerian ESDM RI - Booklet Batubara Indonesia. Kementerian Energi dan Sumber Daya Mineral. https://www.esdm.go.id/id/booklet/booklet-tambang-batubara-2020.
Friederich, M. C., & van Leeuwen, T. (2017). A review of the history of coal exploration, discovery and production in Indonesia: The interplay of legal framework, coal geology and exploration strategy. International Journal of Coal Geology, 178, 56–73. https://doi.org/10.1016/j.coal.2017.04.007.
Goswami, S., & Das, S. (2018). Eichhornia crassipes mediated copper phytoremediation and its success using catfish bioassay. Chemosphere, 210, 440–448. https://doi.org/10.1016/j.chemosphere.2018.07.044.
Hasani, Q., TM Pratiwi, N., Wardiatno, Y., Effendi, H., Nugraha, A., Pirdaus, P., & Wagiran, W. (2021). Phytoremediation of iron in ex-sand mining waters by water hyacinth (Eichhornia crassipes). Biodiversitas Journal of Biological Diversity, 22. https://doi.org/10.13057/biodiv/d220238.
Herniwanti, H. (2013). Water Plants Characteristic for Phytoremediation of Acid Mine Drainage Passive Treatment. 2227–2720.
Hidayati, N. (2005). Fitoremediasi dan Potensi Tumbuhan Hiperakumulator. HAYATI Journal of Biosciences, 12(1), 35–40. https://doi.org/10.1016/S1978-3019(16)30321-7.
Irshad, M. K., Lee, J. C., Aqeel, M., Javed, W., Noman, A., Lam, S. S., Naggar, A. E., Niazi, N. K., Lee, H. H., Ibrahim, M., & Lee, S. S. (2024). Efficacy of Fe-Mg-bimetallic biochar in stabilization of multiple heavy metals-contaminated soil and attenuation of toxicity in spinach (Spinacia oleracea L.). Chemosphere, 364, 143184. https://doi.org/10.1016/j.chemosphere.2024.143184.
Jacobs, A., De Brabandere, L., Drouet, T., Sterckeman, T., & Noret, N. (2018). Phytoextraction of Cd and Zn with Noccaea caerulescens for urban soil remediation: Influence of nitrogen fertilization and planting density. Ecological Engineering, 116, 178–187. https://doi.org/10.1016/j.ecoleng.2018.03.007.
Juswardi, J., Aulia, H., Tanzerina, N., Junaidi, E., & Wardana, S. (2023). Effectiveness of Waterchestnut (Eleocharis dulcis (Burm.f.) Trin. Ex Henschel) in Phytoremediation of Coal Mine Acid Drainage in Constructed Wetlands. 8, 1768.
Kokkinos, E., Kotsali, V., Tzamos, E., & Zouboulis, A. (2024). Acid Mine Drainage Neutralization by Ultrabasic Rocks: A Chromite Mining Tailings Evaluation Case Study. Sustainability, 16(20), Article 20. https://doi.org/10.3390/su16208967.
Konakci, N., Kislioglu, M. S., & Sasmaz, A. (2023). Ni, Cr and Co Phytoremediations by Alyssum murale Grown in the Serpentine Soils Around Guleman Cr Deposits, Elazig Turkey. Bulletin of Environmental Contamination and Toxicology, 110(6), 97. https://doi.org/10.1007/s00128-023-03736-2.
Kusdarto, K. (2008). Potency of zeolite in indonesia. Jurnal Zeolit Indonesia, 7(2), 78–87.
Lasat, M. M., Fuhrmann, M., Ebbs, S. D., Cornish, J. E., & Kochian, L. V. (1998). Phytoremediation of a Radiocesium-Contaminated Soil: Evaluation of Cesium-137 Bioaccumulation in the Shoots of Three Plant Species. Journal of Environmental Quality, 27(1), 165–169. https://doi.org/10.2134/jeq1998.00472425002700010023x.
Małecka, A., Konkolewska, A., Hanć, A., Barałkiewicz, D., Ciszewska, L., Ratajczak, E., Staszak, A. M., Kmita, H., & Jarmuszkiewicz, W. (2019). Insight into the Phytoremediation Capability of Brassica juncea (v. Malopolska): Metal Accumulation and Antioxidant Enzyme Activity. International Journal of Molecular Sciences, 20(18), 4355. https://doi.org/10.3390/ijms20184355.
Malik, M., Chaney, R. L., Brewer, E. P., Li, Y.-M., & Angle, J. S. (2000). Phytoextraction of Soil Cobalt Using Hyperaccumulator Plants. International Journal of Phytoremediation, 2(4), 319–329. https://doi.org/10.1080/15226510008500041.
Medina-Díaz, H. L., López-Bellido, F. J., Alonso-Azcárate, J., Fernández-Morales, F. J., & Rodríguez, L. (2024). A new hyperaccumulator plant (Spergularia rubra) for the decontamination of mine tailings through electrokinetic-assisted phytoextraction. Science of The Total Environment, 912, 169543. https://doi.org/10.1016/j.scitotenv.2023.169543.
Melbaral, A., & Yulhendra, D. (2023). Estimasi Cadangan Batubara PT. Pancaran Surya Abadi, Kecamatan Muara Badak-Anggana, Kabupaten Kutai Kartanegara, Provinsi Kalimantan Timur. Jurnal Bina Tambang, 8(1). https://ejournal.unp.ac.id/index.php/mining/article/view/122190/0
Motsi, T., Rowson, N. A., & Simmons, M. J. H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 92(1), 42–48. https://doi.org/10.1016/j.minpro.2009.02.005.
Nainggolan, G., Suwardi, S., & Darmawan, D. (2009). Pola pelepasan nitrogen dari pupuk tersedia lambat (slow release fertilizer) urea-zeolit-asam humat. Jurnal Zeolit Indonesia. 8(2), 89-96.
Newsome, L., & Falagan, C. (2021). The microbiology of metal mine waste: bioremediation applications and implications for planetary health. GeoHealth, 5. https://doi.org/10.1029/2020GH000380.
Nursanti, I., & Kemala, N. (2019). Peranan Zeolit dalam Peningkatan Kesuburan Tanah Pasca Penambangan. Jurnal Media Pertanian, 4, 88. https://doi.org/10.33087/jagro.v4i2.84
Odjegba, V. J., & Fasidi, I. O. (2007). Phytoremediation of heavy metals by Eichhornia crassipes. The Environmentalist, 27(3), 349–355. https://doi.org/10.1007/s10669-007-9047-2.
Ogunremi, O., Amubieya, O., Ogunkunle, C., & Fatoba, P. (2024). Efficacy of biochar on the phytoremediation potential of Tithonia diversifolia on spent oil-contaminated soil. https://doi.org/10.21203/rs.3.rs-4629528/v1.
Parker, D. R., Feist, L. J., Varvel, T. W., Thomason, D. N., & Zhang, Y. (2003). Selenium phytoremediation potential of Stanleya pinnata. Plant and Soil, 249(1), 157–165. https://doi.org/10.1023/A:1022545629940.
Pramaditya, D. A. (2023). Karakterisasi Sifat Fisik Dan Kimia Tanah Pada Lahan Bekas Tambang Batubara Yang Telah Direklamasi. Jurnal Mineral, Energi, dan Lingkungan, 6(2), Article 2. https://doi.org/10.31315/jmel.v6i2.8022.
Qonita, A. Z., Titah, H. S., & Luthtansa, U. M. (2021). Phytoremediation dynamic model of heavy metal mercury (Hg) in mangrove (Avicennia alba) at Wonorejo River Estuary. Malaysian Journal of Biochemistry and Molecular Biology, 24, 1–9.
Robinson, B. H., Chiarucci, A., Brooks, R. R., Petit, D., Kirkman, J. H., Gregg, P. E. H., & De Dominicis, V. (1997). The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. Journal of Geochemical Exploration, 59(2), 75–86. https://doi.org/10.1016/S0375-6742(97)00010-1.
Roulia, M., & Vasilatos, C. (2023). Using Natural and Synthetic Zeolites for Mine Soils Clean-Up. Materials Proceedings, 15(1), Article 1. https://doi.org/10.3390/materproc2023015020.
Sari, M. O. S. K., Hastuti, E., & Darmanti, S. (2019). Potential of Water Jasmine (Echinodorus palaefolius) In Phytoremediation of Fe in Leachate Jatibarang Landfill. Bioremediation Journal, 7, 55–61. https://doi.org/10.15294/biosaintifika.v11i1.17447.
Sefti, A., Nursanto, E., & Ernawati, R. (2024). Overview Pengelolaan Air Asam Tambang Dengan Menggunakan Zeolit. Jurnal Mineral, Energi, dan Lingkungan, 7(2), Article 2. https://doi.org/10.31315/jmel.v7i2.11316.
Skousen, J. G., Ziemkiewicz, P. F., & McDonald, L. M. (2019). Acid mine drainage formation, control and treatment: Approaches and strategies. The Extractive Industries and Society, 6(1), 241–249. https://doi.org/10.1016/j.exis.2018.09.008.
Song, X., Li, C., & Chen, W. (2022). Phytoremediation potential of Bermuda grass (Cynodon dactylon (L.) pers.) in soils co-contaminated with polycyclic aromatic hydrocarbons and cadmium. Ecotoxicology and Environmental Safety, 234, 113389. https://doi.org/10.1016/j.ecoenv.2022.113389.
Sulistiyohadi, Y., Garniwa, I., Moersidik, S., & Aziz, M. (2020). Acid mine drainage: Why don’t we look at it as energy? AIP Conference Proceedings, 2223(1), 050002. https://doi.org/10.1063/5.0000911.
VZ Novita, SS Moersidik, & CR Priadi. (2019). Phytoremediation Potential of Pistia stratiotes to Reduce High Concentration of Copper (Cu) in Acid Mine Drainage—IOPscience. Sci. 355 012063. https://iopscience.iop.org/article/10.1088/1755-1315/355/1/012063.
Widyati, E. (2006). Bioremediasi tanah bekas tambang batubara dengan sludge industri kertas untuk memacu revegetasi lahan. http://repository.ipb.ac.id/handle/123456789/46957.
Yan, H., Gao, Y., Wu, L., Wang, L., Zhang, T., Dai, C., Xu, W., Feng, L., Ma, M., Zhu, Y.-G., & He, Z. (2019). Potential use of the Pteris vittata arsenic hyperaccumulation-regulation network for phytoremediation. Journal of Hazardous Materials, 368, 386–396. https://doi.org/10.1016/j.jhazmat.2019.01.072.
Yu, C., Peng, X., Yan, H., Li, X., Zhou, Z., & Yan, T. (2015). Phytoremediation Ability of Solanum nigrum L. to Cd-Contaminated Soils with High Levels of Cu, Zn, and Pb. Water, Air, & Soil Pollution, 226(5), 157. https://doi.org/10.1007/s11270-015-2424-4.
Zhou, Y., Lan, W., Yang, F., Zhou, Q., Liu, M., Li, J., Yang, H., & Xiao, Y. (2024). Invasive Amaranthus spp. for heavy metal phytoremediation: Investigations of cadmium and lead accumulation and soil microbial community in three zinc mining areas. Ecotoxicology and Environmental Safety, 285, 117040. https://doi.org/10.1016/j.ecoenv.2024.117040.
Copyright (c) 2025 Suwardi, Putri Oktariani, Aulya Putri, Sara Situmorang

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.