Karakteristik papain soluble collagen gelembung renang ikan manyung dengan variasi praperlakuan alkali dan rasio ekstraktan Characterization of papain-soluble collagen from swim bladder sea catfish with variations in alkali pretreatment and extractant ratio
Abstract
Collagen is a crucial biomaterial in multiple sectors of Indonesia, yet its procurement remains heavily reliant on imports. Catfish swim bladders are considered valuable sources of collagen. It is crucial to optimize the extraction process to obtain a higher yield, which is influenced by variables such as the pretreatment time and sample-to-extractant ratio. This study aimed to maximize the duration of alkali soaking and investigate the influence of various alkali types and extractant-to-sample ratios on collagen extraction from sea catfish swim bladders. This study was comprised of two phases. The first phase involved determining the optimal soaking time in an alkaline solution (KOH). The second phase involved papain-soluble collagen extraction for 48 h, with variations in alkali (KOH and NaOH 0.05 M) and sample-to-extractant ratios (1:10, 1:20, 1:30, w/v). Papain enzyme at 5,000 U/g in 0.5 M acetic acid was utilized as the extractant. The parameters analyzed included fish proportion, proximate amino acids, protein concentration, yield, thermal stability, functional groups, molecular weight, and zeta potential. The data indicate that the sea catfish swim bladder possesses a percentage of 4.08%, and its protein content is 33.58±0.11%. The bladder contains characteristic amino acids, such as proline (29.2 mg/g), alanine (28.9 mg/g), and hydroxyproline (18.18 mg/g). The most suitable duration for alkali soaking using potassium hydroxide (KOH) was determined to be 6 h. Furthermore, the most effective method for extracting papain-soluble collagen involved alkali pretreatment using sodium hydroxide (NaOH) for 6 h with a sample extractant ratio of 1:20 (w/v). The yield of collagen obtained was 35.31±0.65%, which displayed characteristic amide groups (A, B, I, II, and III), an electrophoresis pattern consisting of α1, α2, and β, a maximum transition temperature of 33.06°C, and a zeta potential of +32 mV.
References
Ahmed, R., Haq, M., & Chun, B. S. (2019). Characterization of marine derived collagen extracted from the by-products of bigeye tuna (Thunnus obesus). International Journal of Biological Macromolecules, 135, 668-676. https://doi.org/10.1016/j.ijbiomac.2019.05.213
Alhana, A., Suptijah, P., & Tarman, K. (2015). Extraction and characterization of collagen from sea cucumber flesh. Jurnal Pengolahan Hasil Perikanan Indonesia, 18(2), 150–161. https://doi.org/10.17844/jphpi.2015.18.2.150
Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Food chemistry 4th revised and extended edition. Springer Science & Business Media, Food Chemical.
Benjakul, S., Thiansilakul, Y., Visessanguan, W., Roytrakul, S., Kishimura, H., Prodpran, T., & Meesane, J. (2010). Extraction and characterisation of pepsin-solubilised collagens from the skin of bigeye snapper (Priacanthus tayenus and Priacanthus macracanthus). Journal Science and Food Agriculture, 90(1), 132–138. https://doi.org/10.1002/jsfa.3795
Chen, J., Li, L., Yi, R., Xu, N., Gao, R., & Hong, B. (2016). Extraction and characterization of acid-soluble collagen from scales and skin of tilapia (Oreochromis niloticus). Journal Food Science Technology, 66, 453–459. https://doi.org/10.1016/j.lwt.2015.10.070
Cho, S. M., Gu, Y. S., & Kim, S.B. (2005). Extracting optimization and physical properties of yellowfin tuna (Thunnus albacares) skin gelatin compared to mammalian gelatins. Journal Food Hydrocolloid, 19(2), 221-229. https://doi.org/10.1016/j.foodhyd.2004.05.005
Djailani, F., Trilaksani, W., & Nurhayati, T. (2016). Optimasi ekstraksi dan karakterisasi kolagen dari gelembung renang ikan cunang dengan metode asam-hidro-ekstraksi. Journal Pengolahan Hasil Perikanan Indonesia, 19(2), 156-167. https://doi.org/10.17844/jphpi.2019.19.2.156
Feng, W., Zhao, T., Zhou, Y., Li, F., Zou, Y., Bai, S., Wang, W., Yang, L., & Wu, X. (2013). Optimatization of enzyme-assisted extraction and characterization of collagen from chinese sturgeon (Acipenser sturio Linnaeus) skin. Pharmacognosy Journal, 9(1), S32-S37. https://doi.org/10.4103/0973-1296.117859
Foggia, M. D, Taddei, P., Torreggiani, A., Dettin, M., &Tinti, A. (2011). Self-assembling peptides for biomedical applications:IR and Raman Spectroscopies for the study of secondary structure. Journal Proteomics Research, 2(3), 232-272.
Furtado, M., Chen, L., Chen, Z., Chen, A., & Cui, W. (2022). Development of fish collagen in tissue regeneration and drug delivery. Engineered Regeneration, 3(3), 217-231. https://doi.org/10.1016/j.engreg.2022.05.002
Gadi, D.S., Trilaksani, W., & Nurhayati, T. (2017). Histologi, ekstraksi dan karakterisasi kolagen gelembung renang ikan cunang Muarenesox talabon. Ilmu dan Teknologi Kelautan Tropis, 9(2), 665-683. https://doi.org/10.29244/jitkt.v9i2.19300
Gauza-Włodarczyk, M., Kubisz, L., & Włodarczyk, D. (2017). Amino acid composition in determination of collagen origin and assessment of physical factors effects. International Journal Biology Macromolecule, 104, 987-991. https://doi.org/10.1016/j.ijbiomac.2017.07.013
Ghanaeian, A., & Soheilifard, R. (2018). Mechanical elasticity of proline-rich and hydroxyproline-rich collagen-like triple-helices studied using steered molecular dynamics. Journal of the Mechanical Behavior of Biomedical Materials, 86, 105-112. https://doi:10.1016/j.jmbbm.2018.06.021
He, X., Lin, L., Jiang, S., & Lu, J. (2023). Comparison of Acid-Soluble Collagen (ASC) Extracted from Silver Carp, Walleye Pollock, Porcine and Duck Skin. Heliyon.
Hemre, K., Berge, G. M., Sæle, Ø., Holen, E., Kousoulaki, K., Remø, S. C., & Lein, I. (2022). Optimization of the Balance between Protein, Lipid and Carbohydrate in Diets for Lumpfish (Cyclopterus lumpus). Aquaculture Nutrition. https://doi.org/10.1155/2022/1155989
Huang, Y.R., Shiau, C.Y., Chen, H.H., & Huang, B.C. (2011). Isolation and characterization of acid and pepsin-solubilized collagens from the skin of balloon fish (Diodon holocanthus). Journal Food Hydrocoloids, 25(6), 1507–1513. https://doi.org/10.1016/j.foodhyd.2011.02.011
Idrus, S., Hadinoto, S., & Kolanus, J. (2018). karakterisasi kolagen gelembung renang tuna sirip kuning (Thunnus albacares) dari perairan maluku menggunakan ekstraksi asam. Biopropal Ind, 9(2), 87-94. https://doi.org/10.36974/jbi.v9i2.4020
Jamilah, B., Umi, H.M.R., Mat, H.D., &Sazili, A.Q. (2013). Properties of collagen from barramundi (Lates calcarifer) skin. International Food Research Journal, 20(2), 835-842.
Jaswir, I., Monsur, H.A., & Salleh, H.M. (2011). Nano-structural analysis of fish collagen extracts for new process development. African Journal Biotechnology, 10(81), 18847-18854. https://doi.org/10.5897/AJB11.2764
Kaewdang, O., Benjakul, S., Kaewmanee, T., & Kishimura, H. (2014). Characteristics of collagens from the swim bladders of yellowfin tuna (Thunnus albacares). Food Chemical, 155, 264–270. https://doi.org/10.1016/j.foodchem.2014.01.076
Kiew, P. L., & Mat Don, M. (2012). Collagen extraction from Malaysian cultured catfish (hybrid Clarias sp.): kinetics and optimization of extraction conditions using response surface methodology. International Scholarly Research Notices.
Kartika, I. W. D., Trilaksani, W., Adnyane, I. K. M. (2016). Karakterisasi kolagen limbah gelembung renang ikan cunang hasil ekstraksi asam dan hidrotermal. Journal Pengolahan Hasil Perikanan Indonesia, 19(3), 222-232. https://doi.org/10.17844/jphpi.2016.19.3.222
Kirkness, M.W., Lehmann, K., & Forde, N. R. (2019). Mechanics and structural stability of the collagen triple helix. Journal Current Opinion in Chemical Biology, 53(4), 98-105. https://doi.org/10.1016/j.cbpa.2019.08.001
Kittiphatanabawon, P., Benjakul, S., Visessanguan, W., Nagai, T., & Tanaka, M. (2005). Characterisation of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus). Journal Food Chemical, 89(3), 363-373. https://doi.org/10.1016/j.foodchem.2004.02.042
Kong, J., & Yu, S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, 39(8), 549-559. https://doi.org/10.1111/j.1745-7270.2007.00320.x
Kumar, P., Nidheesh, T., Govindaraju, K., Jyoti, & Suresh, P.V. (2017). Enzymatic extraction and characterisation of a thermostable collagen from swim bladder of rohu (Labeo rohita). Journal Science Food Agriculture, 97(5), 1451-1458. https://doi.org/10.1002/jsfa.7884
Lin, F., Rong, H., Lin, J., Yuan, Y., Yu, J., Yu, C., You, C., Wang, S., Sun, Z., & Wen, X. (2020). Enhancement of collagen deposition in swim bladder of Chu’s croaker 38 (Nibea coibor) by proline: View from in-vitro and in-vivo study. Aquaculture, 523, 735175. https://doi.org/10.1016/j.aquaculture.2020.735175
Liu, D., Liang, L., Regenstein, J.M., & Zhou, P. (2012). Extraction and characterisation of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys nobilis). Food Chemical, 133(4), 1441–1448. https://doi.org/10.1016/j.foodchem.2012.02.032
Liu, D., Wei, G., Li, T., Hu, J., Lu, N., Regenstein, J.M., & Zhou, P. (2015). Effects of alkaline pretreatments and acid extraction conditions on the acid-soluble collagen from grass carp (Ctenopharyngodon idella) skin. Food Chemical, 172, 836-843. https://doi.org/10.1016/j.foodchem.2014.09.147
Lopez, C.H., Rodríguez-Morales, S., Enríquez-Paredes, L.M., Villarreal-Gómez, L.J., Olivera-Castillo, L., Cortes-Santiago, Y., & López, L.M. (2021). Comparison of collagen characteristic from the skin and swim bladder of Gulf corvina (Cynoscion othonopterus), Tissue and Cell, 72, 101593. https://doi.org/10.1016/j.tice.2021.101593
Meng, D., Tanaka, H., Kobayashi, T., Hatayama, H., Zhang, X., Ura, K., Yunoki, S., & Takagi, Y. (2019). The effect of alkaline pretreatment on the biochemical characteristics and fibril-forming abilities of types I and II collagen extracted from bester sturgeon by-products. Journal of Biological Macromolecules, 131, 572-580. https://doi.org/10.1016/j.ijbiomac.2019.03.091
Muyonga, J. H., Cole, C. G. B., & Duodu, K. G. (2004). Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chemical, 86(3), 325-332. https://doi.org/10.1016/j.foodchem.2003.09.038
Mo, C., Wang, Q., Li, G., Dong, W., Liang, F., Wu, C., ... & Wang, Y. (2023). Extraction and Characterization of Pepsin-and Acid-Soluble Collagen from the Swim Bladders of Megalonibea fusca. Marine Drugs, 21(3), 159.
Nollet L. M. L. (1996). Handbook of Food Analysis: Physical characterization dan nutrient analysis. Edisi ke-2. New York (US): CRC Press LLC.
Ogawa, M., Portier, R.J., Moody, M.W., Bell, J., Schexnayder, M.A., & Losso, J.N. (2004). Biochemical properties of bone and scale collagens isolated from the subtropical fish black drum (Pogonias cromis) and sheepshead seabream (Archosargus probatocephalus). Food Chemical, 88(4), 495-501. https://doi.org/10.1016/j.foodchem.2004.02.006
Oliveira, D. M. V., Assis, C. R. D., Costa, B. D. A. M., de Araújo, N. R. C., Monte, F. T. D., da Costa, V. H. M. S., & Porto, A.L.F. (2021). Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products. Journal of Molecular Structure, 1224, 129023. https://doi.org/10.1016/j.molstruc.2020.129023
Orgel, J. P. R. O., Persikov, A. V., & Antipova, O. (2014). Variation in the helical structure of native collagen. PLoS ONE, 9(2). https://doi.org/10.1371/journal.pone.0089519
Riyanto, B. (2006). Pengembangan pelapis edible dari isinglass dan aplikasinya untuk mempertahankan mutu udang masak. [Tesis]. Institut Pertanian Bogor.
Simamora, G. R. R., Trilaksani, W., & Uju, U. (2019). Profiling of Catfish Swim Bladder Collagen (Pangasius sp.) Through Enzymatic Proses. Jurnal Pengolahan Hasil Perikanan Indonesia, 22(2), 299-310. https://doi.org/10.17844/jphpi.v22i2.27717
Singh, P., Benjakul, S., Maqsood, S., & Kishimura, H. (2011). Isolation and characterisation of collagen extracted from the skin of striped catfish (Pangasianodon hypophthalmus). Journal Food Chemical, 124(1), 97-105. https://doi.org/10.1016/j.foodchem.2010.05.111
Sinthusamran, S., Benjakul, S., & Kishimura, H. (2013). Comparative study on molecular characteristics of acid soluble collagens from skin and swim bladder of seabass (Lates calcarifer). Journal Food Chemical, 138(4), 2435-2441. https://doi.org/10.1016/j.foodchem.2012.11.136
Sitepu, G. S. B., Santoso, J., & Trilaksani, W. (2019). Profiling of Collagens from Swim Bladder of Catfish (Pangasius sp.) by Acid Extraction. Jurnal Pengolahan Hasil Perikanan Indonesia, 22(2), 327-339. https://doi.org/10.17844/jphpi.v22i2.27781
Song, W., Chen, W., Yang, Y. N., Li, C., & Qian, G. (2014). Extraction optimization and characterization of collagen from the lung of soft-shelled turtle Pelodiscus sinensis. Biomedical materials, 2(4). https://doi.org.10.11648/j.ijnfs.20140304.16
Suwandi, R., Nurjanah., & Margaretha, W. (2014). Proporsi bagian tubuh dan kadar proksimat ikan gabus pada berbagai ukuran. Jurnal Pengolahan Hasil Perikanan Indonesia,17(1), 22-28.
Tamilmozhi, S., Veeruraj, A., & Arumugam, M. (2013). Isolation and characterization of acid and pepsin-solubilized collagen from the skin of sailfish (Istiophorus platypterus). Food Research International, 54(2), 1499-1505. https://doi.org/10.1016/j.foodres.2013.10.002
Tan, Y., & Chang, S., K., C. (2018). Isolation and characterization of collagen extracted from channel catfish (Ictalurus punctatus) skin. Food Chemistry, 242, 147-155. https://doi.org/10.1016/j.foodchem.2017.09.013
Trilaksani, W., Riyanto, B., & Suminto. (2006, Juli 17-18). Edible film berbahan dasar protein gelembung renang ikan patin (Pangasius sp). [Prosiding]. Konferensi Sains Kelautan dan Perikanan IPB Dramaga, Bogor, Indonesia. 141-150.
Trilaksani , W., Adnyane, I. K. M., Riyanto, B., & Safitri, N. (2019). Nano collagen of the grouper swim bladder in compliance with quality standard of cosmetics materials. IOP Conference Series: Earth and Environmental Science, 404(1). https://doi.org/10.1088/1755-1315/404/1/012050
Qutrinnada, A., Tuslinah, L., & Nurdianti, L. (2022). Isolasi Kolagen dari Limbah Tulang Ikan Tongkol (Euthynnus affinis) serta Pemanfaatan sebagai Sediaan Hand Gel Lotion. In Prosiding Seminar Nasional Diseminasi Hasil Penelitian Program Studi S1 Farmasi, 2(1).
Yoshimura, K., Terashima, M., Hozan, D., & Shirai, K. (2000). Preparation and dynamic viscoelasticity characterization of alkali- solubilized collagen from shark skin. Journal of Agricultural and Food Chemistry, 48(3), 685-690. https://doi.org/10.1021/jf990389d
Zelechowska, E., Sadowska, M., & Turk, M. (2010). Isolation and some properties of collagen from the backbone of Baltic cod (Gadus morhua). Food Hydrocolloids, 24(4), 325-329. https://doi.org/10.1016/j.foodhyd.2009.10.010
Zhang, C., Slegers, P., Wisse, J., Sanders, J. P. M., & Bruins, M.E. (2018). Sustainable scenarios for alkaline protein extraction from leafy biomass using green tea residue as a model material. Biofuels, Bioproducts and Biorefining, 12(4), 586-599. https://doi.org/10.1002/bbb.1870
Zhang, Z.K., Li, G.Y., & Shi, B.L. (2006). Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. J Soc Leath Tech, 90(1), 23-28.
Zhao, W.H., Luo, Q. B., Pan, X., Chi, C.F., Sun, K. L., & Wang, B. (2018). Preparation, identification, and activity evaluation of ten antioxidant peptides from protein hydrolysate of swim bladders of miiuy croaker (Miichthys miiuy). Journal of Functional Foods, 47, 503-511. https://doi.org/10.1016/j.jff.2018.06.014.
Zidek, J., Vojtova, L., Abdel-Mohsen, A.M., Chmelik, J., Zikmund, T., Brtnikova, J., Jakubicek, R., Zubal, L., Jan, J., & Kaiser, J. (2016). Accurate micro-computed tomography imaging of pore spaces in collagen-based scaffold. Journal of Materials Science, 27(6), 1-18. https://doi.org/10.1007/s10856-016-5717-2.
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.