Effects of Peatland Fires on Above-ground Carbon Stocks in Kepulauan Meranti Regency, Riau Province

Anggita Utami Cahyaningtyas, Yudi Setiawan, Erianto Indra Putra, Prayoto Tonoto

Abstract

Peat fires substantially alter ecosystem dynamics and carbon storage, making it essential to understand how fire-related components affect post-fire carbon stocks. This study aims to estimate the above-ground carbon stock on burned peatlands in Kepulauan Meranti Regency, Riau Province, and examine how fire recurrence, last fire occurrence, and burn severity influence the carbon stock using a modified regression model and remote sensing data. The normalized burn ratio index difference between post- and pre-fire was used to calculate burn severity. The continuous predictor variable was transformed using a natural logarithm to generate the best-fit model. The 2014 burned peatland stored the highest carbon, whereas the 2020 burned peatland was the lowest. The 2020 fire period was the most severe compared to the 2014 and 2018–2019 fires, although it had a smaller burned area. This study highlights that fire-related components significantly affect post-fire peatland above-ground carbon stocks, particularly last fire occurrence and burn severity. Meanwhile, fire recurrence had the weakest impact and correlation with above-ground carbon stock compared to other predictors, likely due to the brief intervals between fire events in 2018 and 2019, which may have restricted ecosystem recovery and limited carbon storage capacity.

References

Afira, N., & Wijayanto, A. W. (2022). Mono-temporal and multi-temporal approaches for burnt area detection using Sentinel-2 satellite imagery (A case study of Rokan Hilir Regency, Indonesia). Ecological Informatics, 69, 101677. https://doi.org/10.1016/j.ecoinf.2022.101677

Agus, C., Azmi, F. F., Widiyatno, Ilfana, Z. R., Wulandari, D., Rachmanadi, D., Harun, M. K., & Yuwati, T. W. (2019). The impact of forest fire on the biodiversity and the soil characteristics of tropical peatland. In W. L. Filho, J. Barbir, & R. Preziosi (Eds.), Handbook of climate change and biodiversity. Climate change management (pp. 287–303). Springer.

Astika, Y., Qomar, N., & Sutikno, S. (2022). Implementasi kegiatan restorasi gambut dan fenomena kebakaran lahan dan hutan di Desa Lukun, Kecamatan Tebing Tinggi Timur, Kabupaten Kepulauan Meranti. Wahana Forestra: Jurnal Kehutanan, 17(1), 25−40. https://doi.org/10.31849/forestra.v17i1.7358

Athanasakis, G., Psomiadis, E., & Chatziantoniou, A. (2017, October 5). High-resolution earth observation data and spatial analysis for burn severity evaluation and post-fire effects assessment in the Island of Chios, Greece [Paper presentation]. SPIE Remote Sensing, Warsaw, Poland. https://doi.org/10.1117/12.2278271

Balch, J. K., Nepstad, D. C., Brando, P. M., Curran, L. M., Portela, O., de Carvalho, O. A. Jr., & Lefebvre, P. (2008). Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology, 14(10), 2276–2287. https://doi.org/10.1111/j.1365-2486.2008.01655.x

Balch, J. K., Nepstad, D. C., Curran, L. M., Brando, P. M., Portela, O., Guilherme, P., Reuning-Scherer, J. D., & de Carvalho, O. A. Jr. (2011). Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecology and Management, 261(1), 68–77. https://doi.org/10.1016/j.foreco.2010.09.029

Belenguer-Plomer, M. A., Tanase, M. A., Fernandez-Carrillo, A., & Chuvieco, E. (2019). Burned area detection and mapping using Sentinel-1 backscatter coefficient and thermal anomalies. Remote Sensing of Environment, 233, 111345. https://doi.org/10.1016/j.rse.2019.111345

Budiningsih, K., Nurfatriani, F., Salminah, F., Ulya, N. A., Nurlia, A., Setiabudi, I. M., & Mendham, D. S. (2022). Forest Management Units’ performance in forest fire management implementation in Central Kalimantan and South Sumatra. Forests, 13(6), 894. https://doi.org/10.3390/f13060894

de Carvalho, O. A. Jr., Guimarães, R. F., Silva, C. R., & Gomes, R. A. T. (2015). Standardized time-series and interannual phenological deviation: New techniques for burned-area detection using long-term MODIS-NBR dataset. Remote Sensing, 7(6), 6950−6985. https://doi.org/10.3390/rs70606950

Castillo, E. B., Cayo, E. Y. T., de Almeida, C. M., López, R. S., Briceño, N. B. R., López, J. O. S., Gurbillón, M. Á. B., Oliva, M., & Espinoza-Villar, R. (2020). Monitoring wildfires in the Northeastern Peruvian Amazon using Landsat-8 and Sentinel-2 imagery in the GEE platform. ISPRS International Journal of Geo-Information, 9(10), 564. https://doi.org/10.3390/ijgi9100564

Chidumayo, E. N. (2013). Forest degradation and recovery in a miombo woodland landscape in Zambia: 22 years of observations on permanent sample plots. Forest Ecology and Management, 291, 154−161. https://doi.org/10.1016/j.foreco.2012.11.031

Cochrane, M. A., & Laurance, W. F. (2002). Fire as a large-scale edge effect in Amazonian forests. Journal of Tropical Ecology, 18(3), 311–325. https://doi.org/10.1017/S0266467402002237

Conard, S. G., Sukhinin, A. I., Stocks, B. J., Cahoon, D. R., Davidenko, E. P., & Ivanova, G. A. (2002). Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia. Climatic Change, 55, 197–211. https://doi.org/10.1023/A:1020207710195

Darmawan, B., Siregar, Y. I., Sukendi, & Zahrah, S. (2016). Pengelolaan keberlanjutan ekosistem hutan rawa gambut terhadap kebakaran hutan dan lahan di Semenanjung Kampar, Sumatera. Jurnal Manusia dan Lingkungan, 23(2), 195−205. https://doi.org/10.22146/jml.18791

Dharmawan, I., W., S., Saharjo, B., H., Supriyanto, Arifin, H., S., & Siregar, C., A. (2013). Persamaan alometrik dan cadangan karbon vegetasi pada hutan gambut primer dan bekas terbakar. Jurnal Penelitian Hutan dan Konservasi Alam, 10(2), 175−191.

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schrӧder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27−46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

Dumitraşcu, M., Kucsicsa, G., Dumitricǎ, C., Popovici, E. A., Vrînceanu, A., Mitricǎ, B., Mocanu, I., & Şerban, P. V. (2020). Estimation of future changes in above-ground forest carbon stock in Romania. A prediction based on forest-cover pattern scenario. Forests, 11(9), 914. https://doi.org/10.3390/f11090914

Flannigan, M., Stocks, B., Turetsky, M., & Wotton, M. (2009). Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biology, 15(3), 549–560. https://doi.org/10.1111/j.1365-2486.2008.01660.x

Fraser, R. H., van der Sluijs, J., & Hall, R. J. (2017). Calibrating satellite-based indices of burn severity from UAV-derived metrics of a burned boreal forest in NWT, Canada. Remote Sensing, 9(3), 279. https://doi.org/10.3390/rs9030279

Guo, M., Li, J., Sheng, C., Xu, J., & Wu, L. (2017). A review of wetland remote sensing. Sensors (Basel), 17(4), 777. https://doi.org/10.3390/s17040777

Harenda, K. M., Lamentowicz, M., Samson, M., & Chojnicki, B. H. (2017). The role of peatlands and their carbon storage function in the context of climate change. In T. Zielinski, I. Sagan, & W. Surosz (Eds.) Interdisciplinary approaches for sustainable development goals. GeoPlanet: Earth and Planetary Sciences. Springer.

Harris, S., Veraverbeke, S., & Hook, S. (2011). Evaluating spectral indices for assessing fire severity in chaparral ecosystems (Southern California) using MODIS/ASTER (MASTER) airborne simulator data. Remote Sensing, 3(11), 2403–2419. https://doi.org/10.3390/rs3112403

Hergoualc’h, K., Carmenta, R., Atmadja, S., Martius, C., Murdiyarso, D., & Purnomo, H. (2018). Managing peatlands in Indonesia: Challenges and opportunities for local and global communities. Bogor: CIFOR. https://doi.org/10.17528/cifor/006449

Hoscilo, A., Page, S. E., Tansey, K. J., Rieley, J. O. (2011). Effect of repeated fires on land-cover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005. International Journal of Wildland Fire, 20(4), 578–588. https://doi.org/10.1071/WF10029

Indratmoko, S., & Rizqihandari, N. (2017, November 28−December 1). Burn area detection using Landsat 8 OLI TIRS. [Paper presentation]. 13th Southeast Asian Geography Association Conference (SEAGA 2017), Depok, Indonesia. https://doi.org/10.1088/1755-1315/338/1/012035

[IPCC] Intergovernmental Panel on Climate Change. (2006). IPCC Guidelines for

national greenhouse gas inventories. Agriculture, forestry and other land use (Vol. 4). Hayama: Institute for Global Environmental Strategies (IGES).

Irawan, U. S., & Purwanto, E. (2020). Pengukuran dan pendugaan cadangan karbon pada ekosistem hutan gambut dan mineral. Studi kasus di hutan rawa gambut Pematang Gadung dan hutan lindung Sungai Lesan, Kalimantan. Bogor: Yayasan Tropenbos Indonesia.

Jiang, W., He, G., Long, T., Ni, Y., Liu, H., Peng, Y., Lv, K., & Wang, G. (2018). Multilayer perceptron neural network for surface water extraction in Landsat 8 OLI satellite images. Remote Sensing, 10(5), 755. https://doi.org/10.3390/rs10050755.

Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: A brief review and suggested usage. International Journal of Wildland Fire, 18(1), 116–126. https://doi.org/10.1071/WF07049

Kirana, A. P., Sitanggang, I. S., & Syaufina, L. (2016). Hotspot pattern distribution in peat land area in Sumatera based on spatio temporal clustering. Procedia Environmental Sciences, 33, 635–645. https://doi.org/10.1016/j.proenv.2016.03.118

Komba, A. W., Watanabe, T., Kaneko, M., & Chand, M. B. (2021). Monitoring of vegetation disturbance around protected areas in Central Tanzania using Landsat time-series data. Remote Sensing, 13(9), 1800. https://doi.org/10.3390/rs13091800

Konecny, K., Ballhorn, U., Navratil, P., Jubanski, J., Page, S. E., Tansey, K., Hooijer, A., Vernimmen, R., & Siegert, F. (2016). Variable carbon losses from recurrent fires in drained tropical peatlands. Global Change Biology, 22(4), 1469–1480. https://doi.org/10.1111/gcb.13186

Krisnawati, H., Adinugroho, W. C., Imanuddin, R., Suyoko, Weston, C. J., & Volkova, L. (2021). Carbon balance of tropical peat forests at different fire history and implications for carbon emissions. Science of the Total Environment, 779, 146365. https://doi.org/10.1016/j.scitotenv.2021.146365

Kukavskaya, E. A., Soja, A. J., Petkov, A. P., Ponomarev, E. I., Ivanova, G. A., & Conard, S. G. (2013). Fire emissions estimates in Siberia: Evaluation of uncertainties in area burned, land cover, and fuel consumption. Canadian Journal of Forest Research, 43(5), 493−506. https://doi.org/10.1139/cjfr-2012-0367

Leng, L. Y., Ahmed, O. H., & Jalloh, M. B. (2019). Brief review on climate change and tropical peatlands. Geoscience Frontiers, 10, 373–380. https://doi.org/10.1016/j.gsf.2017.12.018

Li, C., Zhou, L., & Xu, W. (2021). Estimating above-ground biomass using Sentinel-2 MSI data and ensemble algorithms for grassland in the Shengjin Lake Wetland, China. Remote Sensing, 13(8), 1595. https://doi.org/10.3390/rs13081595

Lin, M., Lucas, H. C. Jr., & Shmueli, G. (2013). Research commentary–Too big to fail: Large samples and the p-value problem. Information System Research, 24(4), 906−917. https://doi.org/10.1287/isre.2013.0480

Manaswini, G., & Reddy, C. S. (2015). Geospatial monitoring and prioritization of forest fire incidences in Andhra Pradesh, India. Environmental Monitoring and Assessment, 187(10), 616. https://doi.org/10.1007/s10661-015-4821-y

Manuri, S., Putra, C. A. S., & Saputra, A. D. (2011). Tehnik pendugaan cadangan karbon hutan. Palembang: Merang REDD Pilot Project, German International Cooperation (MRPP-GIZ).

Manuri, S., Brack, C., Nugroho, N. P., Hergoualc’h, K., Novita, N., Dotzauer, H., Verchot, L., Putra, C. A. S., & Widyasari, E. (2014). Tree biomass equations for tropical peat swamp forest ecosystems in Indonesia. Forest Ecology and Management, 334(15), 241−253. https://doi.org/10.1016/j.foreco.2014.08.031

Martins, F. da S. R. V., Xaud, H. A. M., dos Santos, J. R., & Galvão, L. S. (2012). Effects of fire on above-ground forest biomass in the northern Brazilian Amazon. Journal of Tropical Ecology, 28(6), 591–601. https://doi.org/10.1017/s0266467412000636

[MoEF] Ministry of Environment and Forestry. (2019). Laporan inventarisasi gas rumah kaca (GRK) dan monitoring, pelaporan, verifikasi (MPV) tahun 2018. Jakarta: Ministry of Environment and Forestry.

[NASI] National Aeronautics and Space Institute. (2015). Pedoman pemanfaatan Landsat 8 untuk deteksi daerah terbakar (burned area). Jakarta: National Aeronautics and Space Institute (LAPAN).

Nimon, K. F., & Oswald, F. L. (2013). Understanding the results of multiple linear regression: beyond standardized regression coefficients. Organizational Research Methods, 16(4), 650−674. https://doi.org/10.1177/1094428113493929

Numata, I., Cochrane, M. A., & Galvão, L., S. (2011). Analyzing the impacts of frequency and severity of forest fire on the recovery of disturbed forest using Landsat time series and EO-1 Hyperion in the southern Brazilian Amazon. Earth Interactions, 15(13), 1–17. https://doi.org/10.1175/2010EI372.1

Nyamugama, A., & Kakembo, V. (2015). Estimation and monitoring of above-ground carbon stocks using spatial technology. South African Journal of Science, 111 (9/10), 7. https://doi.org/10.17159/SAJS.2015/20140170

Osaki, M., Nursyamsi, D., Noor, M., Wahyunto, & Segah, H. (2016). Peatland in Indonesia. In Osaki, M., & Tsuji, N. (Eds.), Tropical peatland ecosystems (pp. 49–58). Tokyo: Springer.

Page, S. E., & Hooijer, A. (2016). In the line of fire: The peatlands of Southeast Asia. Philosophical Transactions of the Royal Society B, 371, 20150176. https://doi.org/10.1098/rstb.2015.0176

Pandey, H. P., Bhandari, S. K., & Harrison, S. (2022). Comparison among allometric models for tree biomass estimation using non-destructive trees’ data. Tropical Ecology, 63, 263–272. https://doi.org/10.1007/s42965-021-00210-0

Riyadi, M. D. P., Setiawan, Y., & Taufik, M. (2022). Pola distribusi spasial-temporal hotspot dan variasi standardized precipitation index pada lahan gambut tropis di Kepulauan Meranti, Riau. Jurnal Ilmu Lingkungan, 20(3), 457–464. https://doi.org/10.14710/jil.20.3.457-464

Roy, D. P., Boschetti, L., & Trigg, S. N. (2006). Remote sensing of fire severity: Assessing the performance of the normalized burn ratio. IEEE Geoscience and Remote Sensing Letters, 3(1), 112−116. https://doi.org/10.1109/LGRS.2005.858485

Sannigrahi, S., Pilla, F., Basu, B., Basu, A. S., Sarkar, K., Chakraborti, S., Joshi, P. K., Zhang, Q., Wang, Y., Bhatt, S., Bhatt, A., Jha, S., Keesstra, S., & Roy, P. S. (2020). Examining the effects of forest fire on terrestrial carbon emission and ecosystem production in India using remote sensing approaches. Science of the Total Environment, 725, 138331. https://doi.org/10.1016/j.scitotenv.2020.138331

Sato, L. Y., Gomes, V. C. F., Shimabukuro, Y. E., Keller, M., Arai, E., dos-Santos, M. N., Brown, I. F., & e Cruz de Aragão, L. E. O. C. (2016). Post-fire changes in forest biomass retrieved by airborne LiDAR in Amazonia. Remote Sensing, 8(10), 839. https://doi.org/10.3390/rs8100839

Setyawati, W., & Suwarsono. (2017, November 1–2 ). Carbon emission from peat fire in 2015 [Paper presentation]. Humanosphere Science School & the 7th International Symposium for a Sustainable Humanosphere (HSS-ISSH 2017), Bogor, Indonesia. https://doi.org/10.1088/1755-1315/166/1/012041

Shen, G., Liao, J., Guo, H., & Liu, J. (2015). Poyang Lake wetland vegetation biomass inversion using polarimetric RADARSAT-2 synthetic aperture radar data. Journal of Applied Remote Sensing, 9(1), 96077. https://doi.org/10.1117/1.JRS.9.096077

Siahaan, H., Kunarso, A., Sumadi, A., Purwanto, Rusolono T., Tiryana, T., Sumantri, H., & Haasler, B. (2020). Carbon loss affected by fires on various forests and land types in South Sumatra. Indonesian Journal of Forestry Research, 7(1), 15–25. https://doi.org/10.20886/ijfr.2020.7.1.15-25

Sirin, A., & Medvedeva, M. (2022). Remote sensing mapping of peat-fire-burnt areas: Identification among other wildfires. Remote Sensing, 14(1), 194. https://doi.org/10.3390/rs14010194

Suwarsono, Rokhmatuloh, & Waryono, T. (2013). Pengembangan model identifikasi daerah kebakaran hutan dan lahan (burned area) menggunakan citra MODIS di Kalimantan. Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital, 10(2), 93−112.

Thoha, A. S., Saharjo, B. H., Boer, R., & Ardiansyah, M. (2014). Spatiotemporal distribution of peatland fires in Kapuas District, Central Kalimantan Province, Indonesia. Agriculture, Forestry and Fisheries, 3(3), 163–170. https://doi.org/10.11648/j.aff.20140303.14

Toriyama, J., Takahashi, T., Nishimura, S., Sato, T., Monda, Y., Saito, H., Awaya, Y., Limin, S. H., Susanto, A. R., Darma, F., Krisyoyo, & Kiyono, Y. (2014). Estimation of fuel mass and its loss during a forest fire in peat swamp forests of Central Kalimantan, Indonesia. Forest Ecology and Management, 314, 1–8. https://doi.org/10.1016/j.foreco.2013.11.034

Turetsky, M. R., Benscoter, B., Page, S., Rein, G., van der Werf, G. R., & Watts, A. (2015). Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8, 11–14. https://doi.org/10.1038/ngeo2325

Usman, M., Sitanggang, I. S., & Syaufina, L. (2015). Hotspot distribution analyses based on peat characteristics using density-based spatial clustering. Procedia Environmental Sciences, 24, 132–140. https://doi.org/10.1016/j.proenv.2015.03.018

Uyanik, G. K., & Güler, N. (2013). A study on multiple linear regression analysis. Procedia-Social and Behavioral Sciences, 106, 234−240. https://doi.org/10.1016/j.sbspro.2013.12.027

Vashum, K. T., & Jayakumar, S. (2012). Methods to estimate above-ground biomass and carbon stock in natural forests - A review. Journal of Ecosystem & Ecography, 2, 116. https://doi.org/10.4172/2157-7625.1000116

Verma, S., Vashum, K. T., Mani, S., & Jayakumar, S. (2015). Monitoring changes in forest fire pattern in Mudumalai Tiger Reserve, Western Ghats India, using remote sensing and GIS. Global Journal of Science Frontier Research, 15(4), 13−19.

Vetrita, Y., & Cochrane, M. A. (2020). Fire frequency and related land-use and land-cover changes in Indonesia’s peatlands. Remote Sensing, 12(1), 5. https://doi.org/10.3390/rs12010005

Volkova, L., Krisnawati, H., Adinugroho, W. C., Imanuddin, R., Qirom, M. A., Santosa, P. B., Halwany, W., & Weston, C. J. (2020). Identifying and addressing knowledge gaps for improving greenhouse gas emissions estimates from tropical peat forest fires. Science of the Total Environment, 763, 142933. https://doi.org/10.1016/j.scitotenv.2020.142933

Wan, R., Wang, P., Wang, X., Yao, X., & Dai, X. (2018). Modeling wetland above-ground biomass in the Poyang Lake National Nature Reserve using machine learning algorithms and Landsat-8 imagery. Journal of Applied Remote Sensing, 12(4), 46029. https://doi.org/10.1117/1.JRS.12.046029

Warren, M., Hergoualc’h, K., Kauffman, J. B., Murdiyarso, D., & Kolka, R. (2017). An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon Balance and Management, 12, 12. https://doi.org/10.1186/s13021-017-0080-2

Wilkes, P., Disney, M., Vicari, M. B., Calders, K., Burt, A. (2018). Estimating urban above ground biomass with multi-scale LiDAR. Carbon Balance and Management, 13, 10. https://doi.org/10.1186/s13021-018-0098-0

Wit, F., Müller, D., Baum, A., Warneke, T., Pranowo, W. S., Müller, M., & Rixen, T. (2015). The impact of disturbed peatlands on river outgassing in Southeast Asia. Nature Communications, 6, 10155. https://doi.org/10.1038/ncomms10155

Yulianti, N., Hayasaka, H., & Usup, A. (2012). Recent forest and peat fire trends in Indonesia the latest decade by MODIS hotspot data. Global Environment Research, 16(1), 105–116.

Authors

Anggita Utami Cahyaningtyas
au.cahyaningtyas@apps.ipb.ac.id (Primary Contact)
Yudi Setiawan
Erianto Indra Putra
Prayoto Tonoto
CahyaningtyasA. U., SetiawanY., PutraE. I., & TonotoP. (2024). Effects of Peatland Fires on Above-ground Carbon Stocks in Kepulauan Meranti Regency, Riau Province. Jurnal Manajemen Hutan Tropika, 30(3), 336. https://doi.org/10.7226/jtfm.30.3.336

Article Details

Allometric Equation for Estimating Energy Production of Eucalyptus urophylla in Dryland Ecosystems at East Nusa Tenggara

Ronggo Sadono, Wahyu Wardhana, Fahmi Idris, Pandu Yudha Adi Putra Wirabuana
Abstract View : 530
Download :823

Soil Organic Carbon in Forest and Other Land Use Types at Bengkulu City, Indonesia

Wiryono, Zainal Muktamar, Deselina, Steffanie Nurliana, Hastari Aningtias, Paka Mutiara Anugrah
Abstract View : 878
Download :734

Regression Models for Estimating Aboveground Biomass and Stand Volume Using Landsat-Based Indices in Post-Mining Area

Aditya Rizky Priatama, Yudi Setiawan, Irdika Mansur, Muhammad Masyhuri
Abstract View : 669
Download :1440