Allometric Equation for Estimating Energy Production of Eucalyptus urophylla in Dryland Ecosystems at East Nusa Tenggara
Abstract
A precise and accurate energy production quantification, particularly at the individual tree level is needed to understand the potential contribution of eucalyptus plantations to renewable energy development. However, measuring energy storage with a destructive method is inefficient because it requires a large amount of resources. The development of allometric equations is a realistic solution to solve this problem as it facilitates the efficient estimation of energy production from trees. Therefore, this study aims to develop an allometric equation for estimating the energy production of Eucalyptus urophylla in dryland ecosystems in East Nusa Tenggara. The destructive sampling was carried out on 25 sample trees which are evenly distributed from small to large dimensions, while the calorific value of each tree component was analyzed using the bomb calorimeter method. Furthermore, the energy production of each tree was counted by multiplying the calorific value with the total biomass accumulation. To develop an allometric equation, the analysis of regression was applied using several independent variables, such as diameter at breast height (D), combined squared diameter of breast and tree height (D2H), as well as D and H separately. The results showed that the energy production of E. urophylla at the study site varied from 252.56 to 7,813.30 MJ tree-1 with more than 90% accumulated in the stem, followed by foliage (4.62%) and branches (4.05%). The higher the tree dimension, the greater the energy production. Moreover, the equation lnŶ = lna + b.lnD + c.lnH was the best allometric model to estimate energy production with an accuracy of 95.2%. Based on the results, the allometric equation provides an accurate estimation of energy production in E. urophylla.
References
Altanzagas, B., Luo, Y., Altansukh, B., Dorjsuren, C., Fang, J., & Hu, H. (2019). Allometric equations for estimating the above-ground biomass of five forest tree species in Khangai, Mongolia. Forests, 10(8), 1–17. https://doi.org/10.3390/f10080661
Birdsey, R., Duffy, P., Smyth, C., Kurz, W. A., Dugan, A. J., & Houghton, R. (2018). Climate, economic, and environmental impacts of producing wood for bioenergy. Environmental Research Letters, 13(5), 1–9. https://doi.org/10.1088/1748-9326/aab9d5
Carneiro, M., Fabia, A., & Madeira, M. (2014). Effects of site preparation and slash management on growth and understory vegetation of Eucalyptus globulus plantations along a rotation time span in Portugal. European Journal of Forest Research, 133, 941–955. https://doi.org/10.1007/s10342-014-0812-8
Castillo-Santiago, M. A., Ricker, M., & De Jong, B. H. J. (2010). Estimation of tropical forest structure from SPOT-5 satellite images. International Journal of Remote Sensing, 31(10), 2767–2782. https://doi.org/10.1080/01431160903095460
Cavalett, O., Slettmo, S. N., & Cherubini, F. (2018). Energy and environmental aspects of using eucalyptus from Brazil for energy and transportation services in Europe. Sustainability, 10(11), 1–18. https://doi.org/10.3390/su10114068
Chen, D., Huang, X., Zhang, S., & Sun, X. (2017). Biomass modeling of larch (Larix spp.) plantations in China based on the mixed model, dummy variable model, and Bayesian hierarchical model. Forests, 8(8), 5–8. https://doi.org/10.3390/f8080268
Cuong, T., Chinh, T. T. Q., Zhang, Y., & Xie, Y. (2020). Economic performance of forest plantations in Vietnam: Eucalyptus, Acacia mangium, and Manglietia conifera. Forests, 11(3), 1–14. https://doi.org/10.3390/f11030284
Dong, L., Zhang, L., & Li, F. (2018). Additive biomass equations based on different dendrometric variables for two dominant species (Larix gmelini Rupr. and Betula platyphylla Suk.) in natural forests in the Eastern Daxing’an Mountains, Northeast China. Forests, 9(5), 1–24. https://doi.org/10.3390/f9050261
Ekoungoulou, R., Niu, S., Joël Loumeto, J., Averti Ifo, S., Enock Bocko, Y., Mikieleko, F., ..., & Liu, X. (2015). Evaluating the carbon stock in above-and below-ground biomass in a moist Central African Forest. Applied Ecology and Environmental Sciences, 3(2), 51–59. https://doi.org/10.12691/aees-3-2-4
Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso, D., …, & Sullivan, C. A. (2017). Trees, forests and water: Cool insights for a hot world. Global Environmental Change, 43, 51–61. https://doi.org/10.1016/j.gloenvcha.2017.01.002
González-García, M., Hevia, A., Majada, J., & Barrio-Anta, M. (2013). Above-ground biomass estimation at tree and stand level forshort rotation plantations of Eucalyptus nitens (Deane & Maiden) Maiden in Northwest Spain. Biomass and Bioenergy, 54, 147–157. https://doi.org/10.1016/j.biombioe.2013.03.019
González-García, M., Hevia, A., Majada, J., Rubiera, F., & Barrio-Anta, M. (2016). Nutritional, carbon and energy evaluation of Eucalyptus nitens short rotation bioenergy plantations in northwestern Spain. IForest, 9, 303–310. https://doi.org/10.3832/ifor1505-008
Goussanou, C. A., Guendehou, S., Assogbadjo, A. E., Kaire, M., Sinsin, B., & Cuni-Sanchez, A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica, 50(2), 1–22. https://doi.org/10.14214/sf.1474
Guendehou, G. H. S., Lehtonen, A., Moudachirou, M., Mäkipää, R., & Sinsin, B. (2012). Stem biomass and volume models of selected tropical tree species in West Africa. Southern Forests, 74(2), 77–88. https://doi.org/10.2989/20702620.2012.701432
Günther, B., Gebauer, K., Barkowski, R., Rosenthal, M., & Bues, C. T. (2012). Calorific value of selected wood species and wood products. European Journal of Wood and Wood Products, 70(5), 755–757. https://doi.org/10.1007/s00107-012-0613-z
He, H., Zhang, C., Zhao, X., Fousseni, F., Wang, J., Dai, H., ..., & Zuo, Q. (2018). Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China. PLoS ONE, 13(1), 1–16. https://doi.org/10.1371/journal.pone.0186226
Hector, A., Felten, S. Von, Schmid, B., Hector, A., Feiten, S. Von, & Schmid, B. (2016). Analysis of variance with unbalanced data : an update for ecology & evolution. Journal of Animal Ecology, 79(2), 308–316. https://doi.org/10.1111/j.l365-2656.2009.01634.x
Ju, Y. M., Ann, B. J., & Lee, J. (2016). Comparative analysis of gross calorific value by determination method of lignocellulosic biomass using a bomb calorimeter. Journal of the Korean Wood Science and Technology, 44(6), 864–871. https://doi.org/10.5658/WOOD.2016.44.6.864
Kalima, T., Malik, J., & Sunarto. (2019). Eksplorasi jenis rotan di Kabupaten Timor Tengah Selatan, Provinsi Nusa Tenggara Timur. Journal Pro-Life, 6(2), 160–170. https://doi.org/10.33541/pro-life.v6i2
Karyati, Widiati, K. Y., Karmini, & Mulyadi, R. (2021). The allometric relationships for estimating above-ground biomass and carbon stock in an abandoned traditional garden in east kalimantan, indonesia. Biodiversitas, 22(2), 751–762. https://doi.org/10.13057/biodiv/d220228
Krejza, J., Světlík, J., & Bednář, P. (2017). Allometric relationship and biomass expansion factors (BEFs) for above- and below-ground biomass prediction and stem volume estimation for ash (Fraxinus excelsior L.) and oak (Quercus robur L.). Trees-Structure and Function, 31(4), 1303–1316. https://doi.org/10.1007/s00468-017-1549-z
Kumar, A., Bhattacharya, T., Mozammil Hasnain, S. M., Kumar Nayak, A., & Hasnain, M. S. (2020). Applications of biomass-derived materials for energy production, conversion, and storage. Materials Science for Energy Technologies, 3, 905–920. https://doi.org/10.1016/j.mset.2020.10.012
Leslie, A. D., Mencuccini, M., & Perks, M. (2012). The potential for ucalyptus as a wood fuel in the UK. Applied Energy, 89(1), 176–182. https://doi.org/10.1016/j.apenergy.2011.07.037
Magnago, L. M., Arantes, M. D. C., Vidaurre, G. B., Moulin, J. C., & Trugilho, P. F. (2016). Energy estimate and carbon stock in short-rotation eucalyptus stands. Cerne, 22(4), 527–534. https://doi.org/10.1590/01047760201622042209
Mulyana, B., Soeprijadi, D., & Purwanto, R. H. (2020). Allometric model of wood biomass and carbon (Gliricidia sepium (Jacq.) Kunth Ex Walp.) at bioenergy plantation in Indonesia. Forestry Ideas, 26(1), 153–164.
Ribeiro, S. C., Soares, C. P. B., Fehrmann, L., Jacovine, L. A. G., & von Gadow, K. (2015). Aboveground and belowground biomass and carbon estimates for clonal eucalyptus trees in Southeast Brazil. Revista Árvore, 39(2), 353–363. https://doi.org/10.1590/0100-67622015000200015
Robakowski, P., Bielinis, E., & Sendall, K. (2018). Light energy partitioning, photosynthetic efficiency and biomass allocation in invasive Prunus serotina and native Quercus petraea in relation to light environment, competition and allelopathy. Journal of Plant Research, 131(3), 505–523. https://doi.org/10.1007/s10265-018-1009-x
Romanelli, T. L., Milan, M., & Tieppo, R. C. (2012). Energy-based evaluations on eucalyptus biomass production. International Journal of Forestry Research, 2012, 1–13. https://doi.org/10.1155/2012/340865
Romero, F. M. B., Jacovine, L. A. G., Ribeiro, S. C., Torres, C. M. M. E., da Silva, L. F., Gaspar, R. de O., ..., & Fearnside, P. M. (2020). Allometric equations for volume, biomass, and carbon in commercial stems harvested in a managed forest in the southwestern amazon: A case study. Forests, 11(8), 1–17. https://doi.org/10.3390/f11080874
Sadono, R., Wardhana, W., Wirabuana, P. Y. A. P., & Idris, F. (2020). Productivity evaluation of Eucalyptus urophylla plantation established in dryland ecosystems, East Nusa Tenggara. Journal of Degraded and Mining Lands Management, 8(1), 2502–2458. https://doi.org/10.15243/jdmlm.2020.081.2461
Sadono, R., Wardhana, W., Wirabuana, P. Y. A. P., & Idris. (2021a). Soil chemical properties influences on the growth performance of Eucalyptus urophylla planted in dryland ecosystems, East Nusa Tenggara. Journal of Degraded and Mining Lands Management, 8(2), 2635–2642. https://doi.org/10.15243/jdmlm.2021.082.2635
Sadono, R., Wardhana, W., Wirabuana, P. Y. A. P., & Idris, F. (2021b). Allometric equations for estimating aboveground biomass of Eucalytpus urophylla S.T. Blake in East Nusa Tenggara. Journal of Tropical Forest Management, 27(1), 24–31. https://doi.org/10.7226/jtfm.27.1.24
Schwegman, K., Little, K. M., Mcewan, A., Ackerman, S. A., Schwegman, K., Little, K. M., ..., & Ackerman, S. A. (2018). Harvesting and extraction impacts on Eucalyptus grandis × E. urophylla coppicing potential and rotation-end volume in Zululand, South Africa. Southern Forests: A Journal of Forest Science, 80(1), 51–57. https://doi.org/10.2989/20702620.2016.1274858
Simetti, R., Bonduelle, G. M., Silva, D. A. da, Mayer, S. L. S., Souza, H. P., & Muniz, G. I. B. de. (2018). Production of biomass and energy stock for five eucalyptus species. Revista Ciência Da Madeira - RCM, 9(1), 30–36. https://doi.org/10.12953/2177-6830/rcm.v9n1p30-36
Tetemke, B. A., Birhane, E., Rannestad, M. M., & Eid, T. (2019). Allometric models for predicting aboveground biomass of trees in the dry afromontane forests of Northern Ethiopia. Forests, 10(12), 1–15. https://doi.org/10.3390/F10121114
Van Bich, N., Mendham, D., Evans, K. J., Dong, T. L., Hai, V. D., Van Thanh, H., & Mohammed, C. L. (2019). Effect of residue management and fertiliser application on the productivity of a Eucalyptus hybrid and Acacia mangium planted on sloping terrain in northern Vietnam. Southern Forests, 81(3), 201–212. https://doi.org/10.2989/20702620.2018.1555940
Wang, J., Nie, P., Ding, B., Dong, S., Hao, X., Dou, H., & Zhang, X. (2017). Biomass derived carbon for energy storage devices. Journal of Materials Chemistry A, 5(6), 2411–2428. https://doi.org/10.1039/c6ta08742f
Wirabuana, P. Y. A. P., Alam, S., Matatula, J., Harahap, M. M., Nugroho, Y., Idris, F., ..., & Sekar, D. A. (2021). The growth, aboveground biomass, crown development, and leaf characteristics of three eucalyptus species at initial stage of planting in Jepara, Indonesia. Biodiversitas, 22(5), 2859–2869. https://doi.org/10.13057/biodiv/d220550
Wirabuana, P. Y. A. P., Setiahadi, R., Sadono, R., Lukito, M., Martono, D. S., & Matatula, J. (2020). Allometric equations for estimating biomass of community forest tree species in Madiun, Indonesia. Biodiversitas, 21(9), 4291–4300. https://doi.org/10.13057/biodiv/d210947
Xue, Y., Yang, Z., Wang, X., Lin, Z., Li, D., & Su, S. (2016). Tree biomass allocation and its model Additivity for Casuarina equisetifolia in a tropical forest of Hainan Island, China. PLoS ONE, 11(3), 1–20. https://doi.org/10.1371/journal.pone.0151858
Yu, F., Li, S., Chen, W., Wu, T., & Peng, C. (2019). Biomass-derived materials for electrochemical energy storage and conversion: overview and perspectives. Energy and Environmental Materials, 2(1), 55–67. https://doi.org/10.1002/eem2.12030
Zeng, W. Sheng, & Tang, S. Zheng. (2012). Modeling compatible single-tree aboveground biomass equations for masson pine (Pinus massoniana) in southern China. Journal of Forestry Research, 23(4), 593–598. https://doi.org/10.1007/s11676-012-0299-4
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Manajemen Hutan Tropika is an open access journal which means that all contents is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the Budapest Open Access Initiative (BOAI) definition of open access.