Protective Effects of the Polyphenolic-Rich Fraction of Cornsilk against Oxidative Stress in Streptozotocin-Induced Diabetic Rats

Nurraihana Hamzah, Sabreena Safuan, Wan Rosli Wan Ishak

Abstract

Diabetes Mellitus (DM) has become a significant public health problem worldwide and primarily correlated to hyperglycaemia and abnormal lipid and antioxidant levels. Fruit and vegetable wastes are rich in phenolic compounds thus suitable for antioxidant sources. Cornsilk (CS), a maize cultivar waste, also contains phenolic compounds. The current study investigated the anti-hyperglycemic and antioxidative properties of the Phenolic-Rich Fraction of Cornsilk (PRF-CS) in Streptozotocin (STZ)-induced diabetic rats. Five groups of 30 male Sprague Dawley rats were employed in this study. A sample size of six rats each is placed in five groups: Normal-Control (NC), Diabetic-Control (DC), Diabetic-PRF-CS treated 100 mg/kg (DPRF100) and 200 mg/kg (DPRF200), and Diabetic-Metformin Treated (Dmet) groups. The PRF-CS was administered at 100 and 200 mg/kg doses for 28 consecutive days to the diabetic rats. Treatment with both doses of PRF-CS (DPRF100 and DPRF200) significantly decreased the blood glucose levels of the rats (p<0.05). Additionally, the PRF-treated rats demonstrated significantly decreased (p<0.05) lipid peroxidation (3.60±0.23 and 3.31±0.56 µmol/g, respectively). The hepatic antioxidant enzyme activities of Superoxide Dismutase (SOD) (169.35±4.75 and 175.30±3.69 U/mg, respectively), Catalase (CAT) (1457.51±152.74 and 2011.99±396.96 U/mg), and Glutathione Peroxidase (GSH-Px) (63.43±2.99 and 78.47±4.51 U/mg) were also elevated in contrast to the DC group. Furthermore, the PRF-CS administration improved the histological alterations in the liver tissues of the DPRF100 and DPRF200 rats. In conclusion, PRF-CS treatment exhibited protective effects in the diabetic rat model by decreasing oxidative stress and preserving liver integrity.

References

Al-Ani IM, Abired AN, Mustafa BE, Wahab ENA, Azzubaidi MS. 2017. Effect of flaxseed extract on the liver histological structure in streptozotocin induced diabetic rats. Int Medical J Malaysia 16(1):91−98. https://doi.org/10.31436/imjm.v16i1.362

Alatawi FS, Faridi UA, Alatawi MS. 2018. Effect of treatment with vitamin D plus calcium on oxidative stress in streptozotocin-induced diabetic rats. Saudi Pharm J 26(8):1208−1213. https://doi.org/10.1016/j.jsps.2018.07.012

Andrestian MD, Damanik MRM, Anwar F, Yuliana ND. 2019. Effects of torbangun leaves (Coleus amboinicus Lour) extract on blood glucose and super oxide dismutase activity in hyperglycemic rats. J Gizi Pangan 14(3):149−156. https://doi.org/10.25182/jgp.2019.14.3.149-156

Angirekula S, Atti L, Atti S. 2018. Estimation of serum MDA (Malondialdehyde) in various morphological types and clinical stages of age related (senile cataract). International Journal of Advances in Medicine 5(3):674−680. https://doi.org/10.18203/2349-3933.ijam20182122

Asmat U, Abad K, Ismail K. 2016. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J 24(5):547−553. https://doi.org/10.1016/j.jsps.2015.03.013

Bajaj S, Khan A. 2012. Antioxidants and diabetes. Indian J Endocrinol Metab 16(Suppl 2):S267−S271. https://doi.org/10.4103/2230-8210.104057

Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. 2012. Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9−19. https://doi.org/10.1097/WOX.0b013e3182439613

Codella R, Terruzzi I, Luzi L. 2017. Why should people with type 1 diabetes exercise regularly? Acta Diabetol 54(7):615−630. https://doi.org/10.1007/s00592-017-0978-x

Coelho M, Oliveira T, Fernandes R. 2013. State of the art paper biochemistry of adipose tissue: An endocrine organ. Arch Med Sci 9(2):191−200. https://doi.org/10.5114/aoms.2013.33181

Dragan S, Andrica F, Serban MC, Timar R. 2015. Polyphenols-rich natural products for treatment of diabetes. Curr Med Chem 22(1):14−22. https://doi.org/10.2174/0929867321666140826115422

El Hawary SS, Saad S, El Halawany AM, Ali ZY, El Bishbishy M. 2016. Phenolic content and anti-hyperglycemic activity of pecan cultivars from Egypt. Pharm Biol 54(5):788−798. https://doi.org/10.3109/13880209.2015.1080732

Faustino M, Veiga M, Sousa P, Costa EM, Silva S, Pintado M. 2019. Agro-food byproducts as a new source of natural food additives. Molecules 24(6):1056. https://doi.org/10.3390/molecules24061056

Ghada M, Eltohami MS, Nazik MM, Rawan BA, Rania EH, Azhari HN, Adurahman HN, Jessinta S. 2013. Hypoglycemic and hypolipidemic effect of methanol extract of corn silk (Zeamays) in streptozotocin-induced diabetic rats. Int J Eng Res Technol 2(10):668−672. https://doi.org/10.17577/IJERTV2IS100054

Golbidi S, Alireza Ebadi S, Laher I. 2011. Antioxidants in the treatment of diabetes. Curr Diabetes Rev 7(2):106−125. https://doi.org/10.2174/157339911794940729

Jassim YH, Palani AF, Dakeel AB. 2016. Effect of phenolic compounds extract of S. melongena peels on sugar levels and biochemical parameters in alloxan-induced diabetic rats yasmine. Kerbala J Pharm Sci 11:202−209

Jayaraman R, Subramani S, Abdullah SHS, Udaiyar M. 2018. Antihyperglycemic effect of hesperetin, a citrus flavonoid, extenuates hyperglycemia and exploring the potential role in antioxidant and antihyperlidemic in streptozotocin-induced diabetic rats. Biomed Pharmacother 97:98−106. https://doi.org/10.1016/j.biopha.2017.10.102

Kumar S, Pandey AK. 2013. Chemistry and biological activities of flavonoids: An overview. Sci World J 2013. https://doi.org/10.1155/2013/162750

Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, Kong M, Li L, Zhang Q, Liu Y et al. 2016. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21(10):1374. https://doi.org/10.3390/molecules21101374

Liu J, Lin S, Wang Z, Wang C, Wang E, Zhang Y, Liu J. 2011. Supercritical fluid extraction of flavonoids from Maydis stigma and its nitrite-scavenging ability. Food Bioprod Process 89(4):333−339. https://doi.org/10.1016/j.fbp.2010.08.004

Lund A, Vilsbøll T, Bagger JI, Holst JJ, Knop FK. 2011. The separate and combined impact of the intestinal hormones, GIP, GLP-1, and GLP-2, on glucagon secretion in type 2 diabetes. Am J Physiol Endocrinol Metab 300(6):E1038−E1046. https://doi.org/10.1152/ajpendo.00665.2010

Martínez JA, Milagro FI, Claycombe KJ, Schalinske KL. 2014. Epigenetics in adipose tissue, obesity, weight loss, and diabetes. Adv Nutr 5(1):71−81. https://doi.org/10.3945/an.113.004705

Nurhanan AR, Wan Rosli WI, Mohsin SSJ. 2012. Total polyphenol content and free radical scavenging activity of cornsilk (Zea mays Hairs). Sains Malays 41(10):1217−1221

Nurraihana H, Wan Rosli WI, Sabreena S, Norfarizan-Hanoon NA. 2018. Optimisation extraction procedure and identification of phenolic compounds from fractional extract of corn silk (Zea mays Hair) using LC-TOF/MS system. J Food Meas Charact 12(3):1852−1862. https://doi.org/10.1007/s11694-018-9799-z

Rahman FAA. 2016. Phytochemical screening and antihyperglycaemic activities of Cordyceps sinensis and its based product (ESULIN) [Thesis]. Malaysia: Universiti Sains Malaysia, Kubang Kerian, Malaysia

Rahman NA, Rosli WIW. 2014. Nutritional compositions and antioxidative capacity of the silk obtained from immature and mature corn. J King Saud Univ Sci 26(2):119−127. https://doi.org/10.1016/j.jksus.2013.11.002

Ramu R, Shirahatti PS, Swamy SN, Zameer F, Dhananjaya BL, Nagendra Prasad MN. 2016. Assessment of in vivo antidiabetic properties of umbelliferone and lupeol constituents of banana (Musa sp. var. Nanjangud Rasa Bale) flower in hyperglycaemic rodent Model. Plos One 11(7):e0160048. https://doi.org/10.1371/journal.pone.0151135

Sanchez-Valle VC, Chavez-Tapia N, Uribe M, Mendez-Sanchez N. 2012. Role of oxidative stress and molecular changes in liver fibrosis: A review. Curr Med Chem 19(28):4850−4860. https://doi.org/10.2174/092986712803341520

Sarepoua E, Tangwongchai R, Suriharn B, Lertrat K. 2013. Relationships between phytochemicals and antioxidant activity in corn silk. Int Food Res J 20(5):2073−2079

Sarian MN, Ahmed QU, Mat So'Ad SZ, Alhassan AM, Murugesu S, Perumal V, Syed Mohamad SNA, Khatib A, Latip J. 2017. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. Biomed Res Int 2017: 8386065. https://doi.org/10.1155/2017/8386065

Silva LM, Hill LE, Figueiredo E, Gomes CL. 2014. Delivery of phytochemicals of tropical fruit by-products using poly (dl-lactide-co-glycolide) (PLGA) nanoparticles: Synthesis, characterization, and antimicrobial activity. Food Chem 165:362−370. https://doi.org/10.1016/j.foodchem.2014.05.118

Syamsudin, Sumarny R, Simanjuntak P. 2010. Antidiabetic activity of active fractions of Leucaena leucocephala (lmk) dewit seeds in experiment model. Eur J Sci Res 43(3):384−391

Tiwari BK, Pandey KB, Abidi AB, Rizvi SI. 2013. Markers of oxidative stress during diabetes mellitus. J Biomark 2013:1−8. https://doi.org/10.1155/2013/378790

Winter WE, Pittman DL, Devaraj S, Li D, Harris NS. 2021. Evaluation of Hyperglycemia. In: Handbook of Diagnostic Endocrinology. 3rd edition. Massachusetts (USA): Academic Press Book - Elsivier.

Zhang C, Lu X, Tan Y, Li B, Miao X, Jin L, Shi X, Zhang X, Miao L, Li X et al. 2012. Diabetes-induced hepatic pathogenic damage, inflammation, oxidative stress, and insulin resistance was exacerbated in zinc deficient mouse model. Plos One 7(12):e49257. https://doi.org/10.1371/journal.pone.0049257

Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, Li HB. 2015. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 20(12):21138−21156 https://doi.org/10.3390/molecules201219753

Authors

Nurraihana Hamzah
Sabreena Safuan
Wan Rosli Wan Ishak
wrosli@usm.my (Primary Contact)
HamzahN., SafuanS., & Wan IshakW. R. (2023). Protective Effects of the Polyphenolic-Rich Fraction of Cornsilk against Oxidative Stress in Streptozotocin-Induced Diabetic Rats . Jurnal Gizi Dan Pangan, 18(1), 41-50. https://doi.org/10.25182/jgp.2023.18.1.41-50

Article Details

List of Cited By :

Crossref logo