Identifying the Characteristics of Pregnant Women with Inflammation/Infection in Indonesia
Abstract
Infection in pregnant women is common and one of the highest causes of death in Indonesia. Reducing infection conditions through early infection prevention needs to be done, one of which is by knowing the characteristics that contribute to the incidence of infection in pregnant women in Indonesia. This study used the Classification and Regression Tree (CART) method to determine the pregnant women with infections and not infections characteristics and classify them. The results of the CART analysis found that seven variables contributed to separating infected and not-infected status in pregnant women, they are nutritional status based on Body Mass Index (BMI), history of anemia, pregnancy distance, Chronic Energy Deficiency (CED) status, ages, socioeconomic and gestational age. Characteristics of the highest incidence of infection, namely 79%, occurred in the group of pregnant women with overweight – obese (BMI>25.0), anemia and pregnancy distance <3 years. The classification analysis of the CART method in this study resulted in the accuracy of identification performance which was still not good, with an accuracy value of 52.78%. It is necessary analysis with other classification methods such as the Chi-square Automatic Interaction Detection (CHAID) in the future.
References
Breiman L, Friedman JH, Olshen RA, Stone CJ. 1993. Classification and regression trees. New York (US): Chapman and Hall.
Caelen O. 2017. A bayesian interpretation of the confusion matrix. Ann Math Artif Intell 81(3):429‒450. https://doi.org/10.1007/s10472-017-9564-8
Dewi M, Rimbawan R, Agustino A. 2013. Hubungan status gizi dan tekanan darah dengan kadar c-reactive protein darah pada subjek dislipidemia. J Gizi Pangan 8(1):17‒24. https://doi.org/10.25182/jgp.2013.8.1.17-24
Fakhriadi R, Khairiyaty L, Selamat S. 2018. Analisis perbedaan faktor risiko kejadian diare antara daerah bantaran sungai dan daerah daratan di Kabupaten Banjar. J Berk Kesehat 3(2):67. https://doi.org/10.20527/jbk.v3i2.5071
Fitrianingtyas I, Pertiwi FD, Rachmania W. 2018. Faktor-faktor yang berhubungan dengan kejadian kurang energi kronis (kek) pada ibu hamil di puskesmas warung jambu Kota Bogor. Hearty 6(2). https://doi.org/10.32832/hearty.v6i2.1275
Fitriyah EN. 2019. Hubungan usia, jenis kelamin, status imunisasi dan gizi dengan kejadian pneumonia pada baduta. J. Biometrika Kependudukan 8(1):42‒51. https://doi.org/10.20473/jbk.v8i1.2019.42-51
Ginting DA, Julianto E, Lumbanraja A. 2019. Analisis faktor-faktor yang berhubungan dengan infeksi saluran kemih pada kehamilan. Jurnal Kedokteran Methodist 12(2):19‒23.
Hartati A, Zain I, Ulama BSS. 2012. Analisis CART (Classification and Regression Trees) pada faktor-faktor yang mempengaruhi kepala rumah tangga di Jawa Timur melakukan urbanisasi. Jurnal Sains dan Seni Its 1(1):101‒105. https://doi.org/10.12962/j23373520.v1i1.940
[MoH RI] Ministry of Health Republic of Indonesia. 2014. Pedoman gizi seimbang. https://news.ge/anakliis-porti-aris-qveynis-momava [Accessed 15th June 2022].
[MoH RI] Ministry of Health Republic of Indonesia. 2019. Penyakit jantung penyebab kematian terbanyak ke-2 di Indonesia. https://www.kemkes.go.id/article/view/19093000001/penyakit-jantung-penyebab-kematian-terbanyak-ke-2-di-indonesia.html [Accessed 25th March 2022].
[MoH RI] Ministry of Health Republic of Indonesia. 2021 Profil Kesehatan Indonesia Tahun 2020. Jakarta (ID): Ministry of Health of Republic Indonesia.
Lewis RJ. 2000. An Introduction to Classification and Regression Tree (CART) Analysis. In 200 Society for Academic Emergency Medicine (SAEM) Annual Meeting (page 1‒14), 22‒25 May. California (USA).
Liyew AM, Tesema GA, Alamneh TS, Worku MG, Teshale AB, Alem AZ, Tessema ZT, Yeshaw Y. 2021. Prevalence and determinants of anemia among pregnant women in East Africa; A multi-level analysis of recent demographic and health surveys. Plos One 16(4):1‒15. https://doi.org/10.1371/journal.pone.0250560
Mahapatra A. Nayak R, Satpathy A, Pati BK, Mohanty R, Mohanty G, Beura R. 2021. Maternal periodontal status, oral inflammatory load, and systemic inflammation are associated with low infant birth weight. J Periodontol 92(8):1107‒1116. https://doi.org/10.1002/JPER.20-0266
Mohamed NR, Omar H, Abd-Allah IM. 2017. Prevalence and risk factors of urinary tract infection among pregnant women in Ismailia City, Egypt. IOSR Journal of Nursing and Health Science 6(03):2320‒1959. https://doi.org/10.9790/1959-0603076272
Nazar RR. 2018. Penerapan metode CHAID (chi-squared automatic interaction detection) dan CART (classification and regression trees) pada klasifikasi preeklampsia. (studi kasus: Ibu hamil di RS PKU Muhammadiyah Yogyakarta) [Undergraduated Thesis]. Yogyakarta: Universitas Islam Indonesia.
Oechsle A, Wensing M, Ullrich C, Bombana M. 2020. Health knowledge of lifestyle-related risks during pregnancy: A cross-sectional study of pregnant women in germany. IInt. J Environ Res Public Health 17(22):8626. https://doi.org/10.3390/ijerph17228626
Setiawaty E, Afendi FM, Suhaeni C. 2021. Metode CART untuk mengidentifikasi faktor-faktor yang memengaruhi waktu pembelian kendaraan kedua. Xplore: Journal of Statistics 10(2):140‒151. https://doi.org/10.29244/xplore.v10i2.237
Sinaga RJ, Hasanah N. 2019. Determinan kejadian anemia pada ibu hamil di puskesmas tunggakjati Kecamatan Karawang Barat tahun 2019. Jurnal Untuk Masyarakat Sehat (JUKMAS) 3(2):179‒192. https://doi.org/10.52643/jukmas.v3i2.607
Sulistyawati A, Khanifah S. 2015. Hubungan antara anemia dan infeksi ibu dengan persalinan preterm. J Ilmu Kebidanan 3(1):7‒13.
Surapathi IA, Wirawan DN, Sawitri AAS. 2021. Husband's behavior and early marriage as risk factors for hepatitis B virus infection among pregnant women in Karangasem, Bali, Indonesia. Public Health Prev Med Arch 9(1):32. https://doi.org/10.15562/phpma.v9i1.280
Suwardika G. 2017. Pengelompokan dan klasifikasi pada data hepatitis dengan menggunakan support vector machine (SVM), classification and regression tree (cart) dan regresi logistik biner. J of E Research and Evaluation 1(3):183‒191. https://doi.org/10.23887/jere.v1i3.12016
[WHO] World Health Organization. 2014. C-reactive protein concentrations as a marker of inflammation or infection for interpreting biomarkers of micronutrient status. Vitamin asn Mineral Nutrition Information System. Vitamin and Mineral Nutrition Information System (VMNIS) 1‒4. http://apps.who.int/iris/bitstream/10665/133708/1/WHO_ NMH_NHD_EPG_14.7_eng.pdf?ua=1 [Accessed 20th March 2022].
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.