In Vitro α-Glucosidase Inhibition and Antioxidant Activity of Mulberry (Morus Alba L.) Leaf Ethanolic Extract
Abstract
This present work aimed to investigate the in vitro antioxidant activity and α-glucosidase inhibitory effect of mulberry leaf ethanolic extract. Antioxidant analysis was performed using Thiobarbituric Acid (TBA) assay at concentrations of 125, 200, 500, and 1,000 ppm. The results showed that the optimum incubation time was four days and the extracts could reduce the formation of MDA, i.e. 41.21%, 45.33%, 44.19%, and 36.00%, respectively. This suggests that concentration of 200 ppm was found as the best treatment. In addition, the result showed that ethanolic extract of mulberry leaf also showed inhibition against α-glucosidase with the IC50 of 309.82 µg/ml.
References
Alfarabi M, Bintang M, Suryani, Safithri M. 2010. The Comparative Ability of Antioxidant Activity of Piper crocatum in Inhibiting Fatty Acid Oxidation and Free Radical Scavenging. Hayati J Biosci. 17(4):201–204. https://doi.org/10.4308/hjb.17.4.201.
Agustina L, Mustabi J, Jamilah. 2014. Zat Bioaktif dan Daya Hambat Antibakteri Daun Murbei. [Proceeding] Seminar Nasional Agribisnis (page 1–6), 9 September. Semarang: Univesitas Diponegoro.
Allouche Y, Beltrán G, Gaforio JJ, Uceda M, Mesa MD. 2010. Antioxidant and antiatherogenic activities of pentacyclic triterpenic diols and acids. Food Chem Toxicol 48(10):2885–2890. https://doi.org/10.1016/j.fct.2010.07.022.
Amrun M, Umiyah, Umayah E. 2007. Uji Aktivitas antioksidan ekstrak air dan ekstrak Metanol Beberapa Varian Buah Kenitu (Chrysophyllum cainito L.) dari daerah Jember. Berk Penel Hayati 13:45–50.
Arabshahi-Delouee S, Urooj A. 2007. Antioxidant properties various solvent extract of mulberry (Morus indica L.) leaves. Food Chem 102(4):1233-1240. https://doi.org/10.1016/j.foodchem.2006.07.013.
[BPOM] Badan Pengawas Obat dan Makanan. 2014. Peraturan Kepala Badan Pengawas Obat dan Makanan Re-publik Indonesia Nomor 12 Tahun 2014 Tentang Persyaratan Mutu Obat Tradisional. Jakarta: BPOM.
Barclay AW, Petocz P, McMillan-Price J, Flood VM, Prvan T, Mitchell P, Brand-Miller JC. 2008. Glycemic index, glycemic load, and chronic disease risk meta-analysis of observational studies. Am J Clin Nutr 87(3):627–637. https://doi.org/10.1093/ajcn/87.3.627.
Castellano JM, Guinda A, Delgado T, Rada M, Cayuela JA. 2013. Biochemical basis of the antidiabetic activity of oleanolic acid and related pentacyclic triterpenes. Diabetes 62(6):1791–1799. https://doi.org/10.2337/db12-1215.
Chang LW, Juang LJ, Wang BS, Wang MY, Tai HM, Hung WJ, Chen YJ, Huang MH. 2011. Antioxidant and anti-tyrosinase activity of mulberry (Morus alba L.) twigs and root bark. Food Chem Toxicol 49(4):785–790. https://doi.org/10.1016/j.fct.2010.11.045.
Chung HI, Kim J, Kim JY, Kwon O.2013. Acute intake of mulberry leaf aqueous extract affects postprandial glucose response after maltose loading: Randomized double-blind placebo-controlled pilot study. J Funct Foods 5(3):1502–1506. https://doi.org/10.1016/j.jff.2013.04.015.
Efendi R, Damaynthi E, Kustiyah L, Kusumorini N.2010. Pengendalian kadar glukosa darah oleh the hijau dan atau the daun murbei pada tikus diabetes. Jurnal Gizi dan Pangan 5(2): 87–94. https://doi.org/10.25182/jgp.2010.5.2.87-94.
Esterbauer H, Striegl G, Puhl H, Rothene er M. 1989. Continuous monitoring of in vztro oxidation of human low density lipoprotein. Free Radic Res Commun 6(1):67–75. https://doi.org/10.3109/10715768909073429.
Gomathi D, Kalaiselvi M, Ravikumar G, Sophia D, Gopalakrishnan VK, Uma C. 2012. Secondary metabolite credentials of Evolvulus alsinoides by high performance thin layer chromatography (HPTLC). J Biomed Res 26(4):295–302. doi: 10.7555/JBR.26.20110128.
Huang HP, Ou TT, Wang CJ. 2013. Mulberry and its bioactive compounds, the chemoprevention effects and molecular mechanisms in vitro and in vivo. J Tradit Complement Med. 3(1):7–15. https://doi.org/10.4103/2225-4110.106535.
Harborne JP. 1987. Metode Fitokimia. (Padmawinta K, Soediro I, penerjemah). Bandung: ITB.
Hunyadi A, Martins A, Hsieh TJ, Seres A, Zupko I. 2012. Chlorogenic acid and rutin play a major role in the in vivo antidiabetic activity of Morus alba leaf extract on type II diabetic rats. Plos One 7(11): e50619 1–7. https://doi.org/10.1371/journal.pone.0050619.
Hogan S, Zhang L, Li J, Sun S, Canning C, Zhou K. 2010. Antioxidant rich grape pomace extract suppresses postprandial hyperglycemia in diabetic mice by specifically inhibiting alpha-glucosidase. Nutr Metabo 7(71):1–9. https://doi.org/10.1186/1743-7075-7-71.
Jeszka-Skowron M, Kobus J, Flaczyk E. 2009. Evaluation of antioxidant activity of Morus alba leaf extracts. Bro-matol Chem Toksykol. 42:2791–2796.
Jezka-Skowron M, Flaczyk E, Jeszka J, Krejpcio Z, Krol E, Buchowski MS. 2014. Mulberry leaf extract intake re-duces hyperglycaemia in Streptozotocin (STZ)-induced diabetic rats fed high-fat diet. J Funct Foods 8:9–17. https://doi.org/10.1016/j.jff.2014.02.018.
Katsube T, Tsurunaga Y, Sugiyama M, Furuno T, Yamasaki Y. 2009. Effect of air-drying temperature on antioxidant capacity and stability of polyphenolic compounds in mulberry (Morus alba L.) leaves. Food Chem 113(4):964–969. https://doi.org/10.1016/j.foodchem.2008.08.041.
Kazeem MI, Raimi OG, Balogun RM, Ogundajo AL. 2013. Comparative study on the α-amylase and α-glucosidase inhibitory potential of different extracts of Blighia sapida Koenig. Am J Res Commu 1(7): 178–192.
Kikuzaki H dan Nakatami N. 1993. Antioxidant effects of some ginger constituens. J Food Sci 58(6):1407–1410. https://doi.org/10.1111/j.1365-2621.1993.tb06194.x.
Koh LW, Wong LL, Loo YY, Kasapis S, Huang D. 2010. Evaluation of different teas against starch digestibility by mammalian glycosidases. J Agric Food Chem 58(1):148–154. https://doi.org/10.1021/jf903011g.
Kwon HJ, Chung JY, Kim JY, Kwon O. 2011. Comparison of 1-deoxynojirimycin and aqueos mulberry leaf extract with emphasis on postprandial hypoglycemic effects: in vivo and in vitro studies. J Agric Food Chem 59(7): 3014–3019. https://doi.org/10.1021/jf103463f.
Natic MM, Dabic DC, Papetti A, Aksic MMF, Ognjanov V, Ljubojevic M, Tesic ZL. 2015. Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia. Food Chem 171:128–136. https://doi.org/10.1016/j.foodchem.2014.08.101.
Pereira DF, Cazarolli LH, Lavado C, Mengatto V, Figueiredo MSRB, Guedes A, Pizzolatti MG, Silva FRMB. 2011. Effects of flavonoids onα-glucosidase activity: Potential targets for glucose homeostasis. Nutrition 27(11–12):1161–1167. https://doi.org/10.1016/j.nut.2011.01.008.
Rubilar M, Jara C, Poo Y, Acevedo F, Guitierrez C, Sineiro J, Shene C. 2011. Extracts of maqui (Aristotelia chilen-sis) and murta (Ugni molinae Turcz.): Source of antioxidant compounds and α-glucosidase/α-amylase inhibi-tors. Am J Pharmacol Toxicol 59(5):1630-1637. http://pubs.acs.org/doi/abs/10.1021/jf103461k.
Sancheti S, Sancheti S, Yum SS. 2009. Chaenomeles sinensis: A potent α-and β-glucosidase inhibitor. American J Pharm Toxicol 4(1): 8–11.
Voss AA, Diexz-Sampedro A, Hirayama BA, Loo DDF, Wright EM. 2007. Imino sugars are potent agonists of the human glucose sensor SGLT3. Mol Pharmacol 71(2):628–634. https://doi.org/10.1124/mol.106.030288.
Yilmazer-Musa M, Griffith AM, Michels AJ, Schneider E, Frei B. 2012. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity. J Agric Food Chem 60(36):8924-8929. https://doi.org/10.1021/jf301147n.
[WHO] World Health Organization. 2015. Media Centre. Diabetes. Fact sheet No 312. World Health Organization. https://www.who.int/nmh/publications/fact_sheet_diabetes_en.pdf. [Accessed 20 June 2015].
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
The copyright of manuscripts of the article shall be assigned/transferred to Jurnal Gizi dan Pangan (Indonesian Journal of Nutrition and Food)