Viability and Virulence of Fusarium oxysporum f. sp. zingiberi Isolates from Boyolali and Temanggung Preserved for 17 Years in Sterile Soils

  • Loekas Soesanto Universitas Jenderal Soedirman, Banyumas 53122
  • Zaqiatul Fakhiroh Universitas Jenderal Soedirman, Banyumas 53122
  • Woro Sri Suharti
Keywords: ginger, incubation period, macroconidia, microconidia, rhizome rot

Abstract

Fusarium oxysporum f. sp. zingiberi is a soil-borne plant pathogen causing rhizome rot on ginger. This pathogen can survive in the soil for several years without a host plant. This study aimed to examine the viability and virulence of 21 isolates of F. oxysporum f. sp. zingiberi after being preserved for 17 years in sterile soil. Fungal viability was determined by descriptive method, while the experiment using randomized block design was conducted to examine the virulence of fungal isolates.  The treatments consisted of control, 21 isolates of F. oxysporum f. sp. zingiberi from Boyolali and Temanggung, each treatment was replicated three times. The variables consisted of colony colors and diameters, macroconidia and microconidia shapes, growth time, dry weight of mycelia, conidia density, incubation period, affected area, rhizome wet weight difference, and waste index. The results showed that all fungal isolates which were stored in sterile soil for 17 years still had the ability to grow well on PDA medium and fill up petri dishes in 11–36 days. Moreover, all the isolates caused infection and disease symptoms development in ginger rhizome var. Gajah.  Less virulence isolate was characterized by a long incubation period (6–12 days after inoculation) and smaller affected area of the rhizome.

Downloads

Download data is not yet available.

References

Acharya B, Regmi H, Ngangbam AK, Nongmaithem, BD. 2016. Management of rhizome rot disease of ginger using eco-friendly natural products. Indian Journal of Agricultural Research. 50(6):599–603. DOI: https://doi.org/10.18805/ijare.v0iOF.3757.

Agrios GN. 2005. Plant Pathology 5th Edition (5th ed.). Academic Press. https://www.elsevier.com/books/plant-pathology/agrios/978-0-08-047378-9.

Armesto C, Maia FGM, Monteiro FP, de Abreu MS. 2019. Exoenzymes as a pathogenicity factor for Colletotrichum gloeosporioides associated with coffee plants. Summa Phytopathologica. 45(4):368–373. DOI: https://doi.org/10.1590/0100-5405/191071.

Bakerspigel A. 1953. Soil as a storage medium for fungi. Mycologia 45(4):596–604. DOI: https://doi.org/10.1080/00275514.1953.12024301.

Cahyaningrum H, Prihatiningsih N, Soedarmono S. 2017. Intensitas dan Luas Serangan Beberapa Isolat Fusarium oxysporum f. sp. zingiberi pada Jahe Gajah. Jurnal Perlindungan Tanaman Indonesia. 21(1):16–22. DOI: https://doi.org/10.22146/jpti.17743.

Dahmen H, Staub T, Schwinn FJ. 1983. Technique for long-term preservation of phytopathogenic fungi in liquid nitrogen. Phytopathol. 73(2):241–246. DOI: https://doi.org/10.1094/Phyto-73-241.

Debbi A, Boureghda H, Monte E, Hermosa R. 2018. Distribution and genetic variability of Fusarium oxysporum associated with tomato diseases in Algeria and a biocontrol strategy with indigenous Trichoderma spp. Frontiers in Microbiology. 9:282. DOI: https://doi.org/10.3389/fmicb.2018.00282.

Diogo HC, Sarpieri A, Pires MC. 2005. Fungi preservation in distilled water. Anais Brasileiros de Dermatologia. 80(6):591–594. DOI: https://doi.org/10.1590/S0365-05962005000700004.

Farahani-Kofoet RD, Witzel K, Graefe J, Grosch R, Zrenner R. 2020. Species-specific impact of Fusarium infection on the root and shoot characteristics of asparagus. Pathogens. 9(6):509. DOI: https://doi.org/10.3390/pathogens9060509.

Hafizi R, Salleh B, Latiffah Z. 2013. Morphological and molecular characterization of Fusarium. solani and F. oxysporum associated with crown disease of oil palm. Brazilian Journal of Microbiology. 44(3):959–968. DOI: https://doi.org/10.1590/S1517-83822013000300047.

Iqbal, Shomaila, M. Ashfaq, A. H. Malik, K. S. Khan, and P. Mathew. 2017. Isolation, preservation and revival of Trichoderma viride in culture media. Journal of Entomology and Zoology Studies. 5(3):1640–1646.

Li Y, Chi LD, Mao LG, Yan DD, Wu ZF, Ma TT, Guo MX, Wang QX, Ouyang CB, Cao AC. 2014. First report of ginger rhizome rot caused by Fusarium oxysporum in China. Plant Disease. 98(2):282. DOI: https://doi.org/10.1094/PDIS-07-13-0729-PDN.

Mattsson L, Williams H, Berghel J. 2018. Waste of fresh fruit and vegetables at retailers in Sweden-Measuring and calculation of mass, economic cost and climate impact. Resources, Conservation and Recycling. 130:118–126. DOI: https://doi.org/10.1016/j.resconrec.2017.10.037.

Tsegaye M, Tesfaye A. 2020. Morphological and molecular diversity of Fusarium species causing wilt disease in ginger (Zingiber officinale Roscoe) in South-Western Ethiopia. Singapore Journal of Scientific Research. 10(4):342–356. DOI: https://doi.org/10.3923/sjsres.2020.342.356.

Pancasiwi D, Soedarmono, Mugiastuti E, Soesanto L. 2013. Ketahanan tiga varietas jahe terhadap Fusarium oxysporum f. sp. zingiberi in vitro dan in planta. Jurnal Fitopatologi Indonesia. 9(2):68–70. DOI: https://doi.org/10.14692/jfi.9.2.68.

Pasarell LE, McGinnis MR. 1992. Viability of fungal cultures maintained at-70 degrees C. Journal of Clinical Microbiology. 30(4):1000-10004. DOI: https://doi.org/10.1128/jcm.30.4.1000-1004.1992.

Paul JS, Tiwari KL, Jadhav SK. 2015. Long term preservation of commercial important fungi in glycerol at 4 ℃. International Journal of Biological Chemistry. 9(2):79–85. DOI: https://doi.org/10.3923/ijbc.2015.79.85.

Pérez‐García A, Mingorance E, Rivera ME, Del Pino D, Romero D, Torés JA, De Vicente A. 2006. Long‐term preservation of Podosphaera fusca using silica gel. Journal of Phytopathology. 154(3):190–192. DOI: https://doi.org/10.1111/j.1439-0434.2006.01086.x.

Qiangqiang Z, Jiajun W, Li L. 1998. Storage of fungi using sterile distilled water or lyophilization: comparison after 12 years. Mycoses. 41(5–6):255–257. DOI: https://doi.org/10.1111/j.1439-0507.1998.tb00334.x.

Rahman Z, Vaheed S. 2018. Colonization and Optimization of Some Fungal Mycelium through Metal Biosorbent. Medbiotech Journal. 2(3):103–107.

Rauwane ME, Ogugua UV, Kalu CM, Ledwaba LK, Woldesemayat AA, Ntushelo K. 2020. Pathogenicity and virulence factors of Fusarium graminearum including factors discovered using next generation sequencing technologies and proteomics. Microorganisms 8(2):305. DOI: https://doi.org/10.3390/microorganisms8020305.

Riyadi AS, Soesanto L, Kustantinah K. 2008. Virulensi Fusarium oxysporum f. sp. zingiberi Isolat Boyolali dan Temanggung setelah Disimpan Enam Tahun dalam Tanah Steril. Jurnal Perlindungan Tanaman Indonesia. 14(2):80–85.

Sempere F, Santamarina MP. 2009. The conidia formation of several Fusarium species. Annals of microbiology. 59(4):663–674. DOI: https://doi.org/10.1007/BF03179206.

Senanayake IC, Rathnayaka AR, Marasinghe DS, Calabon MS, Gentekaki E, Lee HB, Hurdeal VG, Pem D, Dissanayake LS, Wijesinghe SN, Bundhun D. 2020. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere. 11(1):2678–2754. DOI: https://doi.org/10.5943/mycosphere/11/1/20.

Soares, Flávia Barbosa, Antonio Carlos Monteiro, José Carlos Barbosa, and Dinalva Alves Mochi. 2017. Population density of Beauveria bassiana in soil under the action of fungicides and native microbial populations. Acta Scientiarum. Agronomy. 39(4):465–474. DOI: https://doi.org/10.4025/actasciagron.v39i4.32816.

Soesanto L, Soedarmono, Prihatiningsih N, Manan A, Iriani E, Purnomo J. 2003. Penyakit busuk rimpang jahe di sentra produksi jahe Jawa Tengah: Identifikasi dan sebaran. Tropika. 11(2):178–185.

Soesanto L, Dewi YP, Prihatiningsih N. 2005a. Pengenalan dini penyakit busuk rimpang jahe. Agrin. 8:76–83.

Soesanto L, Soedharmono, Prihatiningsih N, Manan A, Iriani E, Pramono J. 2005b. Penyakit busuk rimpang jahe di sentra produksi jahe Jawa Tengah: Intensitas dan pola sebaran penyakit. Agrosains. 7(1):27–33.

Stirling AM. 2004. The causes of poor establishment of ginger (Zingiber officinale) in Queensland, Australia. Australasian Plant Pathology. 33(2):203–210. DOI: https://doi.org/10.1071/AP04003.

Supriyanto, Purwanto, Poromarto SH, Supyani. 2020. Evaluation of in vitro antagonistic activity of fungi from peatlands against Ganoderma species under acidic condition. Biodiversitas. 21(7):2935–2945. DOI: https://doi.org/10.13057/biodiv/d210709.

Ullah I, Waqas M, Khan MA, Lee IJ, Kim WC. 2017. Exogenous ascorbic acid mitigates flood stress damages of Vigna angularis. Applied Biological Chemistry. 60:603–614. DOI: https://doi.org/10.1007/s13765-017-0316-6.

Velásquez A, Castroverde CD, He SY. 2018. Plant–pathogen warfare under changing climate conditions. Current Biology. 28(10):R619–R634. DOI: https://doi.org/10.1016/j.cub.2018.03.054.

Vieira GR, Liebl M, Tavares LB, Paulert R, Smânia Júnior A. 2008. Submerged culture conditions for the production of mycelial biomass and antimicrobial metabolites by Polyporus tricholoma Mont. Brazilian Journal of Microbiology. 39(3):561–568. DOI: https://doi.org/10.1590/S1517-83822008000300029.

Windels CE, Burners PM, Kommedahl T. 1993. Fusarium species stored on silica gel and soil for ten years. Mycologia. 85(1):21–23. DOI: https://doi.org/10.1080/00275514.1993.12026240

Published
2022-09-13
How to Cite
SoesantoL., FakhirohZ., & SuhartiW. S. (2022). Viability and Virulence of Fusarium oxysporum f. sp. zingiberi Isolates from Boyolali and Temanggung Preserved for 17 Years in Sterile Soils. Jurnal Fitopatologi Indonesia, 18(2), 91-99. https://doi.org/10.14692/jfi.18.2.91-99
Section
Articles