KINETIC STUDY ON ADSORPTION AND DESORPTION PHOSPHAT ION (PO42-) IN SEDIMENT SEMARANG DAN JEPARA

  • Lilik Maslukah Universitas Diponegoro
  • Muhammad Zainuri
  • Anindya Wirasatriya
  • Rikha Widiaratih
Keywords: adsorption, desorption, Jepara, PO24-, sediment, Semarang

Abstract

Adsorption and desorption are important processes that affect the distribution of chemicals in the environment. This research aims to determine the change pattern of PO42- concentration by time through adsorption and desorption simulations. The simulation process was conducted on sediments from Semarang and Jepara waters. Through the analysis of desorption process, the contribution of sediment input to the P ion can be determined, based on the release of ions PO42- at the beginning of time until the maximum conditions of the desorption process. The first and second order of (what) equations were used to determine the adsorption kinetics, while the isotherms of the adsorptions were determined based on the Langmuir and Freundlich models. The results show that the significant desorption process occurs during the first hour and the contribution of PO42- ions by Semarang sediments are three times higher than Jepara sediments. Based on the adsorption kinetics and isotherms, the second order of the equation model and the Langmuir model are more appropriate for both locations. This model assumes that the adsorption capacity is proportional to the number of active sites occupied by PO42- ions and the adsorption occurs in one homogeneous sedimentary layer. Semarang sediments have adsorp pollutants (P ions) ability greater than Jepara Sediments with capacity values respectively are 11.57 and 11.2 µmol g-1.

Downloads

Download data is not yet available.

References

Bappedal Propinsi Jawa Tengah. 2002. Laporan program kali bersih tahun 2002. Laporan Penelitian. Semarang: Pemerintah Propinsi Jawa Tengah. 13-14 pp.

Chester, R. 1990. Marine Geochemistry. London: Unwin Hyman Ltd. 698 p.

Cui, Y., R. Xiao, Y. Xie, & M. Zhang. 2018. Phosphorus fraction and phosphate sorption-release characteristics of the wetland sediments in the Yellow River Delta. Physics and Chemistry of the Earth, 103: 19–27. https://doi.org/10.1016/j.pce.2017.06.005

Cao, X, X. Liu, J. Zhu, L. Wang, S. Liu, & G. Yang. 2017. Characterization of phosphorus sorption on the sediments of Yangtze River Estuary and its adjacent areas. Marine Pollution Bulletin, 114: 277–284. http://doi.org/10.1016/j.marpolbul.2016.09.026

Ghabbour, E.A. & G. Davies. 2011. Environmental insights from Langmuir adsorption site capacities. Colloids Surf. A: Physicochem. Eng. Aspects, 381(1-3): 37-40. https://doi.org/10.1016/j.colsurfa.2011.03.014

Handayani M. & E. Sulistiyono. 2009. Uji persamaan Langmuir dan Freundlich pada penyerapan limbah Chrom (Vi) oleh Zeolit. Prosiding Seminar Nasional Sains dan Teknologi Nuklir PTNBR – BATAN Bandung, 3 Juni 2009. 130-136 pp.

Haryanti, M. 2010. Karakteristik sorpsi dan desorpsi fosfat pada oxisol dengan pendekatan kinetik. J. Solum, VII(2): 97-109. https://doi.org/10.25077/js.7.2.97-109.2010

Holmes, L.A., A. Tumer, & R.C. Thompson. 2012. Adsorption of trace metals to plastic resin pellets in the marine environment. Environ. Poll., 160: 42-48. https://doi.org/10.1016/j.envpol.2011.08.052

Huang, W.Y., D. Li, Z. Liu, Q. Tao, Y. Zhu, J. Yang, & Y.M. Zang. 2014. Kinetics, Isotherm, Thermodynamic, and Adsorption Mechanism of La(OH)3-modified Exfoliated Vermiculites as Highly Efficient Phosphate Adsorbents. Chemnical Engineering J., 236: 191-201. https://doi.org/10.1016/j.cej.2013.09.077

Larasati, A & S. Notoatmodjo. 2014. Equilibrium and kinetics of orthophosphate removal from aqueous phase with adsorption-desorption methods. J. Teknik Lingkungan, 20(1): 38-47. http://doi.org/10.5614%2Fjtl.2014.20.1.5

Mangwandi, C., A.B. Albadarin, Y. Glocheux, & G.M. Walker. 2014. Removal of ortho-phosphate from aqueous solution by adsorption onto dolomite. J. of Environmental Chemical Engineering, 2(2): 1123-1130. https://doi.org/10.1016/j.jece.2014.04.010

Maslukah, L., E. Yudiati, & Sarjito. 2017. Adsorption model of heavy metals Pb, Cu, and Zn on water-sediment systems in Banjir Kanal Barat estuary Semarang. Maspari J., 9(2): 149-158.

Maslukah, L., M. Zainuri, A. Wirasatriya, & U. Salma. 2019. Spatial distribution of chlorophyll-a and its relationship with dissolved inorganic phosphate influenced by rivers in the North Coast of Java. J. of Ecological Engineering, 20(7): 18–25. https://doi.org/10.12911/22998993/108700

Meng, J., P. Yao, Z. Yu, T.S. Bianchi, B. Zhao, H. Pan, & D. Li. 2014a. Speciation, bioavailability and preservation of phosphorus in surface sediments of the Changjiang estuary and adjacent East China Sea inner shelf. Estuarine, Coastal and Shelf Scienc., 144: 27–38. http://doi.org/10.1016/j.ecss.2014.04.015

Meng, J., Q.Z. Yao, & Z.G. Yu. 2014b. Particulate phosphorus speciation and phosphate adsorption characteristics associated with sediment grain size. Ecol. Eng., 70: 140-145. http://doi.org/10.1016/j.ecoleng.2014.05.007

Omari, H., A. Dehbi, A. Lammini, & A. Abdallaoui. 2019. Study of the phosphorus adsorption on the sediments. J. of Chemistry, 2019: 1-10. https://doi.org/10.1155/2019/2760204

Pohan, M.S.A., Sutarno, & Suyanta. 2016. Studi adsorpsi-desorpsi anion fosfat pada zeolit termodifikasi CTAB. J. Penelitian Sains, 18(3): 123-135. https://doi.org/10.26554/jps.v18i3.20

Prartono, T. & T. Hasena. 2009. Kinetic study of phosphor and nitrogen compound from sedimentary re-suspension, J. Ilmu dan Teknologi Laut Tropis, 1(1): 1-8. https://doi.org/10.29244/jitkt.v1i1.7933

Praveena, S.M, S.S. Siraj. A.Z. Aris, N.M. Al-Bakri, A.K. Suleiman, & A.A. Zainal. 2013. Assessment of tidal and anthropogenic impacts on coastal waters by exploratory data analysis: an example from Port Dickson, Strait of Malacca, Malaysia. Environmental Forensics, 14(2): 146-154. https://doi.org/10.1080/15275922.2013.781081

Rout, P.R., P. Bhunia, & R.R. Dash. 2014. Modeling isotherms, kinetics, and understanding the mechanism of phosphate adsorption onto a solid waste: ground burn patties. J. of Environmental Chemical Engineering, 2(3): 1331-1342. https://doi.org/10.1016/j.jece.2014.04.017

Schnoor, J. 1996. Environmental Modeling. New York: John Wiley and Son, Inc.704 p.

Seo, D.C., K. Yu, & R.D. Delaune. 2008. Comparison of monometal and multimetal adsorption in Mississippi River alluvial wetland sediment: batch and column experiments. J. Chemospher, 73(11): 1757-1764. https://doi.org/10.1016/j.chemosphere.2008.09.003

Wang, P., B. Hu, C. Wang, & Y. Lei. 2015. Phosphorus adsorption and sedimentation by suspended sediments from zhushan bay, Taihu lake. Environ. Sci. Pollut. Res., 22: 6559-6569. https://doi.org/10.1007/s11356-015-4114-6

Yu, J., F. Qu, H. Wu, L. Meng, S. Du, & B. Xie. 2014. Soil phosphorus forms and profile distributions in the tidal river network region in the Yellow River Delta Estuary, Sci. World J., 2014: 1-14. https://doi.org/10.1155/2014/912083

Yang, X., X. Chenb, & X. Yanga. 2019. Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil dan Tillage Research, 187: 85–91. https://doi.org/10.1016/j.still.2018.11.016

Zhang, B., F. Fang, J.S. Guo, Y.P. Chen, Z. Li, & S.S. Guo. 2012. Phosphorus fractions and phosphate sorption-release characteristics relevant to the soil composition of water-level-fluctuating zone of three gorges reservoir. Ecol. Eng., 40: 153-159. https://doi.org/10.1016/j.ecoleng.2011.12.024

Zhang, Y., C. Wang, F. He, B. Liu, D. Xu, S. Xia, Q. Zhou, & Z. Wu. 2016. In-situ adsorption-biological combined technology treating sediment phosphorus in all fractions. Sci. Rep., 6(29725): 1-11. https://doi.org/10.1038/srep29725

Published
2020-08-31