CUSTOMER SEGMENTATION WITH K-MEANS ALGORITHM AND BUSINESS STRATEGY BUSINESS INTELLIGENCE IN VEGETABLE ONLINE RETAILING
DOI:
https://doi.org/10.24961/j.tek.ind.pert.2025.35.2.118Abstract
Most MSMEs still have obstacles to growing and developing at the business level. Applying a business
intelligence system is expected to assist in making appropriate and quick business decisions so that MSMEs can
grow and develop. This research aimed to determine customer segmentation based on product clustering that
consumers demand. In addition, this study aims to determine the benefits of business intelligence in providing
business performance information to make decisions. This research uses the k-means algorithm for clustering.
Business intelligence uses Power BI software for visualisation. Based on the results of analysing product clustering
with the k-means algorithm, the optimal number of clusters is 2 (k = 2). Determination of the value of k = 2 uses
an average centroid distance of 121,624,275,127, and validation of the minimum DBI value = 0.052. Based on the
clustering results, cluster 0 (28%) and cluster 1 (72%) are two consumer segments. Insights on the sales dashboard
are daily sales fluctuations, the dominance of certain products in demand, and products with low sales. Strategy
initiatives for the long term are customer segmentation for more personalized promos, focus on subscriptions and
repeat orders, optimising digital marketing, and the use of predictive analytics to forecast sales trends. On the
dashboard of production, order, and stock, information, such as daily production tends to exceed orders, leading
to overstock, while orders fluctuate inconsistently. The key challenges are unbalanced production and demand,
overstock on certain products, unstable orders, and underproduced products.
Keywords: business intelligence, data analytics, k-means algorithm, Micro Small Medium Enterprise
References
Anjaningrum WD, Azizah N, S. N. 2024. Spurring SMEs’ performance through business intelligence, organizational and network learning, customer value anticipation, and innovation - Empirical evidence of the creative economy sector in East Java, Indonesia. Heliyon, 10(7), e27998. https://doi.org/10.1016/j.heliyon.2024.e27998
Antoniadis I, Tsiakiris T, T. S. 2015. Business Intelligence During Times of Crisis: Adoption and Usage of ERP Systems by SMEs. Procedia - Social and Behavioral Sciences, 175, 299–307. https://doi.org/10.1016/j.sbspro.2015.01.1204
Dewia F, M. E. 2019. Business process maturity level of MSMEs in East Java, Indonesia. Procedia Computer Science, 161, 1098–1105. https://doi.org/10.1016/j.procs.2019.11.221
Duque J, Godinhob A, V. J. 2022. Knowledge data extraction for business intelligence A design science research approach. Procedia Computer Science, 204(2021), 131–139. https://doi.org/10.1016/j.procs.2022.08.016
Fitriana R, Eriyatno , Taufik Djatna T, K. B. 2012. Peran Sistem Intelijensia Bisnis Dalam Manajemen Pengelolaan Pelanggan Dan Mutu Untuk Agroindustri Susu Skala Usaha Menengah the Role of Business Intelligence Systems in Customer Relationship Management and Quality for Dairy Agroindustry Medium Enterprise. J Tek Ind Pert, 22(3), 131–139.
Fitriana R, Saragih J, and L. N. 2017. Model business intelligence system design of quality products by using data mining in R Bakery Company. IOP Conference Series: Materials Science and Engineering, 277(1). https://doi.org/10.1088/1757-899X/277/1/012005
Gouveia FD, M. H. 2022. Digital Transformation for SMES in the Retail Industry. Procedia Computer Science, 204, 671–681. https://doi.org/10.1016/j.procs.2022.08.081
Herdiana O, Maesaroh SS, N. A. 2022. Perencanaan Business Intelligence untuk Strategi Pengembangan Produk Unggulan UMKM. Jurnal Teknologi Informatika Dan Komputer, 8(2), 101–109. https://doi.org/10.37012/jtik.v8i2.1142
Herliana S. 2015. Regional Innovation Cluster for Small and Medium Enterprises (SME): A Triple Helix Concept. Procedia - Social and Behavioral Sciences, 169(August 2014), 151–160. https://doi.org/10.1016/j.sbspro.2015.01.297
Hidayat MK, F. R. 2022. Penerapan Sistem Intelijensia Bisnis Dan K-Means Clustering Untuk Memantau Produksi Tanaman Obat. Jurnal Teknologi Industri Pertanian, 32(2), 204–219. https://doi.org/10.24961/j.tek.ind.pert.2022.32.2.204
Kovacic I, Schuetz CG, Neumayr B, S. M. 2022. OLAP Patterns: A pattern-based approach to multidimensional data analysis. Data and Knowledge Engineering, 138(November 2021), 101948. https://doi.org/10.1016/j.datak.2021.101948
Kumar S, Chuli A, Jain A, P. N. 2023. Data Analytics for Pandemic Management using MapReduce and Apriori Algorithm. Procedia Computer Science, 230, 455–466. https://doi.org/10.1016/j.procs.2023.12.101
Llave MR. 2017. Business Intelligence and Analytics in Small and Medium-sized Enterprises: A Systematic Literature Review. Procedia Computer Science, 121, 194–205. https://doi.org/10.1016/j.procs.2017.11.027
Llave MR. 2019. A Review of Business Intelligence and Analytics in Small and Medium-Sized Enterprises. International Journal of Business Intelligence Research, 10(1), 19–42. https://doi.org/10.4018/IJBIR.2019010102
Malik S, J. R. 2018. Literatur review and techniques of machine learning algorithm used in business intelligence for inventory management. International Journal of Engineering Sciences & Research Technology, 7(1), 230–241.
Muhamad N. 2023. Jumlah Usaha Mikro, Kecil, dan Menengah/UMKM di Indonesia Berdasarkan Kelasnya (2021). https://databoks.katadata.co.id/datapublish/2023/10/13/usaha-mikro-tetap-merajai-umkm-berapa-jumlahnya#:~:text=Kementerian Koperasi dan Usaha Kecil,UMKM) di Indonesia pada 2021.
Panchal G, Clegg B, Koupaei EE, Masi D, C. I. 2024. Digital transformation and business intelligence for a SME: systems thinking action research using PrOH modelling. Procedia Computer Science, 232, 1809–1818. https://doi.org/10.1016/j.procs.2024.02.003
Roy S, Cortesi A, S. S. (2022). Context-aware OLAP for textual data warehouses. International Journal of Information Management Data Insights, 2(2), 100129. https://doi.org/10.1016/j.jjimei.2022.100129
Shobana J, Gangadhar Ch, Rakesh Kumar Arora RK, Renjith PN, Bamini J, C. Y. 2023. E-commerce customer churn prevention using machine learning-based business intelligence strategy. Measurement: Sensors, 27, 100728. https://doi.org/10.1016/j.measen.2023.100728
Sugiarto D, Mardianto I, Najih M, Adrian D, P. A. 2021. Perancangan Dashboard Untuk Visualisasi Harga Dan Pasokan Beras Di Pasar Induk Beras Cipinang. Jurnal Teknologi Industri Pertanian, 31(1), 12–19. https://doi.org/10.24961/j.tek.ind.pert.2021.31.1.12
Sulaiman NS, Y. J. 2013. Development of Dashboard Visualization for Cardiovascular Disease based on Star Scheme. Procedia Technology, 11(Iceei), 455–462. https://doi.org/10.1016/j.protcy.2013.12.215
Turnip YEH, Fitriana. R. 2023. Clustering Kabupaten Berdasarkan Luas Hutan Menggunakan Metode K-Means Di Provinsi Jawa Tengah. Jurnal Teknologi Industri Pertanian, 33(1), 1–9. https://doi.org/10.24961/j.tek.ind.pert.2023.33.1.1
Tutuneaa MF, R. R. 2012. Business Intelligence Solutions for SME’s. Procedia Economics and Finance, 3(12), 865–870. https://doi.org/10.1016/s2212-5671(12)00242-0

_page-00013.jpg)






_(1).png)