Presence of Antibiotic-Resistant in Staphylococcal Subclinical Mastitis in Several Regencies of East Java, Indonesia

D. C. Widianingrum, H. Khasanah, H. S. Addy

Abstract

Staphylococcal mastitis has been reported as a serious dairy disease in various regions around the world. The occurrence of resistant strains in Staphylococcus species to antibiotics has triggered alternative treatment substituting antibiotic usage on the global scene. This study aimed to investigate the presence of antibiotic-resistant genes in Staphylococcal subclinical-mastitis cases present in several regencies of East Java Province, Indonesia. A total of 592 quarter milk samples were collected from 62 farms in the region with high dairy cattle populations in Lumajang, Banyuwangi, Malang, Sidoarjo, Jember, Pasuruan, Probolinggo, and Mojokerto. Subclinical-mastitis samples were screened using the California mastitis test (CMT). Positive CMT samples were grown on the selective Staphylococcus media and tested for their biochemical properties. The polymerase chain reaction was performed to detect the presence of antibiotic-resistant genes in all isolates (Staphylococcus sp) using a specific pair-primer for mecA, blaZ, tetK, and tetM genes. The result showed that about 67% of milk samples were subclinical mastitis in several regencies of East Java. About 17.12% of subclinical mastitis was caused by Staphylococcus species (Staphylococcus aureus, Staphylococcus epidermidis, and other non-aureus Staphylococci (NAS)). The most prevalent region of Staphylococcal subclinical-mastitis was recorded in Jember. However, only NAS species obtained from Mojokerto, Malang, Probolinggo, and Banyuwangi were detected to have a blaZ gene responsible for penicillin resistance. In conclusion, the appearance of the antibiotic-resistant gene in NAS species found in several regencies of East Java can be used as important information to evaluate Staphylococcal subclinical-mastitis treatment.

References

Abebe, R., H. Hatiya, M. Abera, B. Megersa, & K. Asmare. 2016. Bovine mastitis: Prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC Vet. Res. 12:1-11. https://doi.org/10.1186/s12917-016-0905-3
Akter, S., M. M. Rahman, M. A. Sayeed, M. N. Islam, D. Hossain, M. A. Hoque, & G. Koop. 2020. Prevalence, aetiology and risk factors of subclinical mastitis in goats in Bangladesh. Small Rumin. Res. 184:106046. https://doi.org/10.1016/j.smallrumres.2020.106046
Arjyal, C., K. C. Jyoti, & N. Neupane. 2020. Prevalence of methicillin-resistant Staphylococcus aureus in Shrines. Int. J. Microbiol. 2020:7981648. https://doi.org/10.1155/2020/7981648
Aslam, B., W. Wang, M. I. Arshad, M. Khurshid, S. Muzammil, M. H. Rasool, M. A. Nisar, R. F. Alvi, M. A. Aslam, M. U. Qamar, M. Salamat, & Z. Baloch. 2018. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 11:1645-1658. https://doi.org/10.2147/IDR.S173867
Åvall-Jääskeläinen, S., S. Taponen, R. Kant, L. Paulin, J. Blom, A. Palva, & J. Koort. 2018. Comparative genome analysis of 24 bovine-associated Staphylococcus isolates with special focus on the putative virulence genes. PeerJ 6:e4560. https://doi.org/10.7717/peerj.4560
Aziz, F., J. Hisatsune, L. Yu, J. Kajimura, Y. Sato’o, H. K. Ono, K. Masuda, M. Yamaoka, S. I. O. Salasia, A. Nakane, & H. Ohge. 2020. Staphylococcus aureus isolated from skin from atopic-dermatitis patients produces Staphylococcal enterotoxin Y, which predominantly induces T-cell receptor Vα-specific expansion of T cells. Infect. Immun. 88:e00360-19 https://doi.org/10.1128/IAI.00360-19
Bachaya, H. A., M. A. Raza, S. Murtaza, & I. U. R. Akbar. 2011. Subclinical bovine mastitis in Muzaffar Garh district of Punjab (Pakistan). J. Anim. Plant Sci. 21:16-19.
Barker, M., P. Adelson, M. D. Peters, & M. Steen. 2020. Probiotics and human lactational mastitis: A scoping review. Women Birth 13:e483-e491. https://doi.org/10.1016/j.wombi.2020.01.001
Brown, K., M. Mugoh, D. R. Call, & S. Omulo. 2020. Antibiotic residues and antibiotic-resistant bacteria detected in milk marketed for human consumption in Kibera, Nairobi. PLoS ONE 15:e0233413. https://doi.org/10.1371/journal.pone.0233413
Cardoso, C. V., E. V. Barbosa, M. H. T. Liberal, & E. F. das Chagas. 2019. Transgenic technology: the strategy for the control and prevention of bovine staphylococcal mastitis? Biotechnol. Res. Innov. 3:291-297. https://doi.org/10.1016/j.biori.2019.08.001
Carter, G. R. & D. J. Wise. 2004. Essentials of veterinary bacteriology and mycology. 6th Ed. Iowa State Press. A Blackwell Publishing Company, Iowa.
Cervinkova D., H. Vlkova, I. Borodacova, J. Makovcova, V. Babak, A. Lorencova, I. Vrtkova, D. Marosevic, & Z. Jaglic. 2013. Prevalence of mastitis pathogens in milk from clinically healthy cows. Vet. Med. 58:567-575. https://doi.org/10.17221/7138-VETMED
Chandrasekaran, D., P. Venkatesan, K. G. Tirumurugaan, A. P. Nambi, P. S. Thirunavukkarasu, K. Kumanan, S. Vairamuthu, & S. Ramesh. 2014. Pattern of antibiotic resistant mastitis in dairy cows. Vet. World. 7:389-394. https://doi.org/10.14202/vetworld.2014.389-394
Cheng, J., M. Zhou, D. B. Nobrega, Z. Cao, J. Yang, C. Zhu. & J. Gao. 2021. Virulence profiles of Klebsiella pneumoniae isolated from 2 large dairy farms in China. Int. J. Dairy Sci. 104:9027-9036. https://doi.org/10.3168/jds.2020-20042
Cretenet, M., S. Even, & Y. Le Loir. 2011. Unveiling Staphylococcus aureus enterotoxin production in dairy products: a review of recent advances to face new challenges. Dairy Sci. Technol. 91:127-150. https://doi.org/10.1007/s13594-011-0014-9
Gonçalves, J. L., C. Kamphuis, H. Vernooij, J. P. Araújo Jr, R. C. Grenfell, L. Juliano, K. L. Anderson, H. Hogeveen, & M. V. Dos Santos. 2020. Pathogen effects on milk yield and composition in chronic subclinical mastitis in dairy cows. Vet. J. 262:105473. https://doi.org/10.1016/j.tvjl.2020.105473
Griffioen, K., A. G. Velthuis, G. Koop, & T. J. Lam. 2021. Effects of a mastitis treatment strategy with or without on-farm testing. Int. J. Dairy Sci. 104:4665-4681. https://doi.org/10.3168/jds.2019-17871
Handayani, R. S., S. Siahaan, & M. J. Herman. 2017. Antimicrobial resistance and its control policy implementation in hospital in Indonesia. Jurnal Penelitian dan Pengembangan Pelayanan Kesehatan 1:131-140. https://doi.org/10.22435/jpppk.v1i2.537
Harjanti, D. W. & P. Sambodho. 2020. Effects of mastitis on milk production and composition in dairy cows. Earth Environ. Sci. 518:012032. https://doi.org/10.1088/1755-1315/518/1/012032
Heikkilä, A. M., E. Liski, S. Pyörälä, & S. Taponen. 2018. Pathogen-specific production losses in bovine mastitis. J. Dairy Sci. 101:9493-9504. https://doi.org/10.3168/jds.2018-14824
Hoekstra, J., Zomer, A. L., Rutten, V. P. M. G. 2020. Genomic analysis of European bovine Staphylococcus aureus from clinical versus subclinical mastitis. Sci. Rep. 10:18172. https://doi.org/10.1038/s41598-020-75179-2
Kaniyamattam, K., A. De Vries, L. W. Tauer, & Y. T. Gröhn. 2020. Economics of reducing antibiotic usage for clinical mastitis and metritis through genomic selection. J. Dairy Sci. 103:473-491. https://doi.org/10.3168/jds.2018-15817
Kerro-Dego, O., T. Prysliak, J. Perez-Casal, & A. A. Potter. 2012. Role of GapC in the pathogenesis of Staphylococcus aureus. Vet. Microbiol. 156:443-447. https://doi.org/10.1016/j.vetmic.2011.11.018
Khairullah, A. R., D. Raharjo, J. Rahmahani, Suwarno, W. Tyasningsih, & N. Harijani. 2019. Antibiotics resistant at Staphylococcus aureus and Streptococcus sp isolated from bovine mastitis in Karangploso, East Java, Indonesia. Indian J. Forensic Med. Toxicol. 13:451-456. https://doi.org/10.5958/0973-9130.2019.00329.3
Koop, G., T. Van Werven, H. J. Schuiling, & M. Nielen. 2010. The effect of subclinical mastitis on milk yield in dairy goats. J. Dairy Sci. 93:5809-5817. https://doi.org/10.3168/jds.2010-3544
Leitner, G., D. Zilberman, E. Papirov, & S. Shefy. 2018. Assessment of acoustic pulse therapy (APT), a non-antibiotic treatment for dairy cows with clinical and subclinical mastitis. PLoS ONE 13:e0199195. https://doi.org/10.1371/journal.pone.0199195
Lucia, M., S. Rahayu, D. Haerah, & D. Wahyuni. 2017. Detection of Staphylococcus aureus and Streptococcus agalactiae: Subclinical mastitis causes in dairy cow and dairy buffalo (Bubalus Bubalis). Am. J. Biomed. Res. 5:8-13.
Machado, G. T. P., M. B. Veleirinho, L. A. Honorato, & S. Kuhnen. 2020. Formulation and evaluation of anti-MRSA nanoemulsion loaded with Achyrocline satureioides: A new sustainable strategy for the bovine mastitis. Nano Express 1:030004. https://doi.org/10.1088/2632-959X/abbcac
Mahmmod, Y. S., I. C. Klaas, L. Svennesen, K. Pedersen, & H. Ingmer. 2018. Communications of Staphylococcus aureus and non-aureus Staphylococcus species from bovine intramammary infections and teat apex colonization. J. Dairy Sci. 101:7322-7333. https://doi.org/10.3168/jds.2017-14311
Mama, O. M., L. Morales, L. Ruiz-Ripa, M. Zarazaga, & C. Torres. 2020. High prevalence of multidrug resistant S. aureus-CC398 and frequent detection of enterotoxin genes among non-CC398 S. aureus from pig-derived food in Spain. Int. J. Food Microbiol. 320:108510. https://doi.org/10.1016/j.ijfoodmicro.2020.108510
Martineau, F., F. J. Picard, N. Lansac, C. Ménard, P. H. Roy, M. Ouellette, & M. G. Bergeron. 2000. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob. Agents Chemother. 44:231-238. https://doi.org/10.1128/AAC.44.2.231-238.2000
Mbindyo, C. M., G. C. Gitao, & C. M. Mulei. 2020. Prevalence, etiology, and risk factors of mastitis in dairy cattle in Embu and Kajiado Counties, Kenya. Vet. Med. Int. 2020:8831172. https://doi.org/10.1155/2020/8831172
Mekonnen, S. A., G. Koop, S. T. Melkie, C. D. Getahun, H. Hogeveen, & T. J. Lam. 2017. Prevalence of subclinical mastitis and associated risk factors at cow and herd level in dairy farms in North-West Ethiopia. Prev. Vet. Med. 145:23-31. https://doi.org/10.1016/j.prevetmed.2017.06.009
Ministry of Agriculture. 2020. Livestock and Animal Health Statistics 2020. Directorate General Livestock and Animal Health Ministry of Agriculture Republic Indonesia. Jakarta, Indonesia.
Mohandes, S. S. E., I. M. Gamal, H. A. Abou-Zeina, & M. K. Elbayoumy. 2021. Some studies on phenotypic and genotypic characters of small colony variants Staphylococcus aureus isolated from dairy cows infected with mastitis in Egypt. Adv. Anim. Vet. Sci. 9:637-647. https://doi.org/10.17582/journal.aavs/2021/9.5.637.647
Oliveira, L., C. Hulland, & P. L. Ruegg. 2013. Characterization of clinical mastitis occurring in cows on 50 large dairy herds in Wisconsin. J. Dairy Sci. 96:7538-7549. https://doi.org/10.3168/jds.2012-6078
Poizat, A., F. Bonnet-Beaugrand, A. Rault, C. Fourichon, & N. Bareille. 2017. Antibiotic use by farmers to control mastitis as influenced by health advice and dairy farming systems. Prev. Vet. Med. 146:61-72. https://doi.org/10.1016/j.prevetmed.2017.07.016
Ramandinianto, S. C., A. R. Khairullah, & M. H. Effendi. 2020. MecA gene and methicillin-resistant Staphylococcus aureus (MRSA) isolated from dairy farms in East Java, Indonesia. Biodiversitas 218:3562-3568. https://doi.org/10.13057/biodiv/d210819
Raza, A., G. Muhammad, S. Sharif, & A. Atta. 2013. Biofilm producing Staphylococcus aureus and bovine mastitis: a review. Mol. Microbiol. Res. 3:1-8. https://doi.org/10.5376/mmr.2013.03.0001
Ruegg, P. L. 2017. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 100:10381-10397. https://doi.org/10.3168/jds.2017-13023
Saini, V., J. T. McClure, D. T. Scholl, T. J. DeVries, & H. W. Barkema. 2012. Herd-level association between antimicrobial use and antimicrobial resistance in bovine mastitis Staphylococcus aureus isolates on Canadian dairy farms. J. Dairy Sci. 95:1921-1929. https://doi.org/10.3168/jds.2011-5065
Salasia, S. I. O., S. Tato, N. Sugiyono, D. Ariyanti, & F. Prabawati. 2011. Genotypic characterization of Staphylococcus aureus isolated from bovines, humans, and food in Indonesia. J. Vet Sci. 12:353-361. https://doi.org/10.4142/jvs.2011.12.4.353
Song, X., X. Huang, H. Xu, C. Zhang, S. Chen, F. Liu, S. Guan, S. Zhang, K. Zhu, & C. Wu. 2020. The prevalence of pathogens causing bovine mastitis and their associated risk factors in 15 large dairy farms in China: An observational study. Vet. Microbiol. 247:108757. https://doi.org/10.1016/j.vetmic.2020.108757
Spanu, V., C. Spanu, S. Virdis, F. Cossu, C. Scarano, & E. P. L. De Santis. 2012. Virulence factors and genetic variability of Staphylococcus aureus strains isolated from raw sheep’s milk cheese. Int. J. Food Microbiol. 153:53-57. https://doi.org/10.1016/j.ijfoodmicro.2011.10.015
Straub, J. A., C. Hertel, & W. P. Hammes. 1999. A 23S rDNA-targeted polymerase chain reaction based system for detection of Staphylococcus aureus in meat starter cultures and dairy products. J. Food Prot. 62:1150-115. https://doi.org/10.4315/0362-028X-62.10.1150
Strommenger, B., C. Kettlitz, G. Werner, & W. Witte. 2003. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J. Clin. Microbiol. 41:4089-4094. https://doi.org/10.1128/JCM.41.9.4089-4094.2003
Subramanian, A., V. K. Chitalia, K. Bangera, S. P. Vaidya, R. Warke, A. Chowdhary & R. A. Deshmukh. 2017. Evaluation of HiaureusTM coagulase confirmation kit in identification of Staphylococcus aureus. J. Clin. Diag. Res. 11:DC08-DC13. https://doi.org/10.7860/JCDR/2017/24021.9265
Sumon, S. M. M. R., M. A. Ehsan, & M. T. Islam. 2017. Subclinical mastitis in dairy cows: Somatic cell counts and associated bacteria in Mymensingh, Bangladesh. J. Bangladesh Agril. Univ. 15:266-271. https://doi.org/10.3329/jbau.v15i2.35073
Tahmasebi, H., B. Zeyni, S. Dehbashi, H. Motamedi, M. Vafaeefar, F. Keramat, & M. R. Arabestani. 2017. The study of blaZ and mecA gene expression in methicillin-resistant Staphylococcus aureus strains and the relationship between the gene expression patterns. J. Isfahan Medical School. 35:1062-1067.
Vishnuraj, M. R., G. Kandeepan, K. H. Rao, S. Chand, & V. Kumbhar. 2016. Occurrence, public health hazards and detection methods of antibiotic residues in foods of animal origin: A comprehensive review. Cogent Food Agric. 2:1235458. https://doi.org/10.1080/23311932.2016.1235458
Widianingrum D. C., C. T. Noviandi, & S. I. O. Salasia. 2019. Antibacterial and immunomodulatory activities of Virgin Coconut Oil (VCO) against Staphylococcus aureus. Heliyon 5:1-5. https://doi.org/10.1016/j.heliyon.2019.e02612
Widianingrum D. C., S. Windria, & S. I. O. Salasia. 2016. Antibiotic resistance and methicillin resistant Staphylococcus aureus isolated from bovine, crossbred Etawa goat and human. Asian J. Anim. Vet. Adv. 11:122-129. https://doi.org/10.3923/ajava.2016.122.129
Windria, S., D. C. Widianingrum, & S. I. O. Salasia. 2016. Identification of Staphylococcus aureus and coagulase negative Staphylococci isolates from mastitis milk of Etawa crossbred goat. Res. J. Microbiol. 11:11-19. https://doi.org/10.3923/jm.2016.11.19
Yang, F., Q. Wang, X. Wang, L. Wang, M. Xiao, X. Li, J. Luo, S. Zhang, & H. Li. 2015. Prevalence of blaZ gene and other virulence genes in penicillin-resistant Staphylococcus aureus isolated from bovine mastitis cases in Gansu, China. Turkish J. Vet. Animal Sci. 39:634-636. https://doi.org/10.3906/vet-1504-81
Yuan, Y. G., Q. L. Peng, & S. Gurunathan. 2017. Effects of silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: an alternative approach for antimicrobial therapy. Int. J. Mol. Sci. 18:569. https://doi.org/10.3390/ijms18030569
Zaman, S. B., M. A. Hussain, R. Nye, V. Mehta, K. T. Mamun, & N. Hossain. 2017. A review on antibiotic resistance: Alarm bells are ringing. Cureus 9:e1403. https://doi.org/10.7759/cureus.1403

Authors

D. C. Widianingrum
H. Khasanah
H. S. Addy
hsaddy.faperta@unej.ac.id (Primary Contact)
WidianingrumD. C., KhasanahH., & AddyH. S. (2022). Presence of Antibiotic-Resistant in Staphylococcal Subclinical Mastitis in Several Regencies of East Java, Indonesia. Tropical Animal Science Journal, 45(1), 91-97. https://doi.org/10.5398/tasj.2022.45.1.91

Article Details

List of Cited By :

Crossref logo