The Manipulation of Folate Biosynthesis in Lactic Acid Bacteria with a Folate Analog and Enhancers

Fenny Amilia Mahara, Lilis Nuraida, Siti Nurjanah

Abstract

Folate biosynthesis in Lacticaseibacillus rhamnosus R23 isolate of breast milk and Limosilactobacillus fermentum JK13 isolate of kefir granules was manipulated by stressing them with a folate analog (methotrexate) to increase extracellular folate production. Extracellular folate production was further enhanced in isolate R23 (as a folate-efficient probiotic) by adding various enhancer compounds (PABA, glutamate, combination PABA-glutamate, CaCl2, and ascorbic acid) in a folate-free medium. Extracellular folate analysis was done using a microbiological assay that quantified all forms of folate in the samples. Both isolates could grow in folate-free medium containing methotrexate (2.5 mg/L); however, random mutant colonies of both had no increase in extracellular folate production. The resistance mechanism against methotrexate did not trigger excessive extracellular folate production but caused bacterial filamentation. Adding various enhancer compounds also did not significantly increase the extracellular folate production of isolate R23, probably due to the inadequate concentration of the compounds. This study's results indicate that stress exposure to methotrexate seems to be ineffective to increase the extracellular folate production of isolates R23 and JK13. The formation of bacterial filaments in response to stress exposure to methotrexate is possibly a new mechanism that has not been previously reported regarding the mechanism of methotrexate resistance by lactic acid bacteria. This study requires further investigation primarily evaluating intracellular folate concentrations and finding optimum concentrations of different folate biosynthesis enhancer compounds.

References

Ahmad, S. I., Kirk, S. H., & Eisenstark, A. (1998). Thymine metabolism and thymineless death in prokaryotes and eukaryotes. Annual Review of Microbiology, 52, 591–625. https://doi.org/10.1146/annurev.micro.52.1.591

Banerjee, S., Lo, K., Ojkic, N., Stephens, R., Scherer, N. F., & Dinner, A. R. (2021). Mechanical feedback promotes bacterial adaptation to antibiotics. Nature Physics, 17(2021), 403–409. https://doi.org/10.1038/s41567-020-01079-x

del Valle, M. J., Laiño, J. E., de Giori, G. S., & LeBlanc, J. G. (2014). Riboflavin producing lactic acid bacteria as a biotechnological strategy to obtain bio-enriched soymilk. Food Research International, 62, 1015–1019. https://doi.org/10.1016/j.foodres.2014.05.029

Delchier, N., Herbig, A. L., Rychlik, M., & Renard, C. M. G. C. (2016). Folates in fruits and vegetables: contents, processing, and stability. Compre-hensive Reviews in Food Science Food Safety, 15(3), 506–528. https://doi.org/10.1111/1541-4337.12193

Divya, J. B., & Nampoothiri, K. M. (2015). Folate fortification of skim milk by a probiotic Lactococcus lactis CM28 and evaluation of its stability in fermented milk on cold storage. Journal of Food Science Technology, 52(6), 3513–3519. https://doi.org/10.1007/s13197-014-1406-7

Farber, J. L. (1990). The role of calcium ions in toxic cell injury. Environmental Health Perspectives, 84, 107–111. https://doi.org/10.1289/ehp.9084107

[FAO/WHO] Food and Agriculture Organization/ World Health Organization. (2002). Human Vitamin and Mineral Requirements. https://www. fao.org/3/y2809e/y2809e.pdf [July 30th 2022].

Gangadharan, D., & Nampoothiri, K. M. (2011). Folate production using Lactococcus lactis ssp. cremoris with implications for fortification of skim milk and fruit juices. LWT-Food Science and Technology, 44(9), 1859–1864. https://doi.org/10.1016/j.lwt.2011.05.002

Hugenschmidt, S., Schwenninger, S. M., & Lacroix, C. (2011). Concurrent high production of natural folate and vitamin B12 using a co-culture process with Lactobacillus plantarum SM39 and Propionibacterium freudenreichii DF13. Process Biochemistry, 46(5), 1063–1070. https://doi.org/10.1016/j.procbio.2011.01.021

Imbard, A., Benoist, J. F., & Blom, H. J. (2013). Neural tube defects, folic acid and methylation. International Journal of Environmental Research and Public Health, 10(9), 4352–4389. https://doi.org/10.3390/ijerph10094352

Ismail, S., Eljazzar, S., & Ganji, V. (2023). Intended and unintended benefits of folic acid fortification—A narrative review. Foods, 12(8), 1612. https://doi.org/10.3390/foods12081612

Justice, S. S., Hunstad, D. A., Cegelski, L., & Hultgren, S. J. (2008). Morphological plasticity as a bacterial survival strategy. Nature Reviews Microbiology, 6, 162–168. https://doi.org/10.1038/nrmicro1820

Laiño, J.E., del Valle, M.J., de Giori, G.S., & LeBlanc, J.G.J. (2014). Applicability of a Lactobacillus amylovorus strain as co-culture for natural folate bio-enrichment of fermented milk. International Journal of Food Microbiology, 191, 10–16. https://doi.org/10.1016/j.ijfoodmicro.2014.08.031

Laiño, J.E., Levit, R., de LeBlanc, A.D.M., de Giori, G.S., & LeBlanc, J.G. (2019). Characterization of folate production and probiotic potential of Streptococcus gallolyticus subsp. macedonicus CRL415. Food Microbiology, 79, 20–26. https://doi.org/10.1016/j.fm.2018.10.015

Lapujade, P., Cocaign-Bousquet, M., & Loubiere, P. (1998). Glutamate biosynthesis in Lactococcus lactis subsp. lactis NCDO 2118. Applied and Environmental Microbiology, 64(7), 2485–2489. https://doi.org/10.1128/AEM.64.7.2485-2489.1998

Lyon, P., Strippoli, V., Fang, B., & Cimmino, L. (2020). B vitamins and one-carbon metabolism: implications in human health and disease. Nutrients, 12(9), 2867. https://doi.org/10.3390/nu12092867

Mahara, F.A., Nuraida, L., & Lioe, H.N. (2019). Fermentation of milk using folate-producing lactic acid bacteria to increase natural folate content: a review. Journal of Applied Biotechnology Reports, 6(4), 129–136. https://doi.org/10.29252/JABR.06.04.01

Mahara, F.A., Nuraida, L., & Lioe, H.N. (2021). Folate in milk fermented by lactic acid bacteria from different food sources. Preventive Nutrition and Food Science, 26(2), 230–240. https://doi.org/10.3746/pnf.2021.26.2.230

Mahara, F.A., Nuraida, L., Lioe, H.N., & Nurjanah, S. (2023). The occurrence of folate biosynthesis genes in lactic acid bacteria from different sources. Food Technology and Biotechnology, 61(2), 226–237. https://doi.org/10.17113/ftb.61.02.23.7929

Maryati, Y., Nuraida, L., & Dewanti-Hariyadi, R. (2016). A study in vitro of lactic acid bacteria (LAB) isolates on cholesterol lowering ability in the presence of oligosaccharides. Agritech-Jurnal Teknologi Pertanian, 36(2), 196–205. https://doi.org/10.22146/agritech.12865

McNulty, H., Ward, M., Caffrey, A., & Pentieva, K. (2023). Contribution of folic acid to human health and challenges of translating the science into effective policy: a call to action for the implementation of food fortification in Ireland. Proceedings of the Nutrition Society, 82(2), 91–103. https://doi.org/10.1017/S0029665123002719

Mosso, A. L., Jimenez, M. E., Vignolo, G., Leblanc, J. G., & Samman, N. C. (2018). Increasing the folate content of tuber based foods using potentially probiotic lactic acid bacteria. Food Research International, 109, 168–174. https://doi.org/10.1016/j.foodres.2018.03.073

Mousavi, S. S., Moeini, H., Mohamad, R., Dinarvand, M., Ariff, A., Ling, F. H., & Raha, A. R. (2013). Effects of medium and culture conditions on folate production by Streptococcus thermophilus BAA-250. Research in Biotechnology, 4(6), 21–29.

Nuraida, L., Hana, H. A., & Prangdimurti, E. (2012). Potential of Lactobacillus isolated from breast milk to prevent diarrheae. Jurnal Teknologi dan Industri Pangan, 23(2), 158–165. https://doi.org/10.6066/jtip.2012.23.2.158

Ojkic, N., Serbanescu, D., & Banerjee, S. (2022). Antibiotic resistance via bacterial cell shape-shifting. Mbio, 13(3), e00659-22. https://doi.org/10.1128/mbio.00659-22

Padalino, M., Perez-Conesa, D., López-Nicolás, R., Frontela-Saseta, C., & Ros-Berruezo, G. (2012). Effect of fructooligosaccharides and galactooligosaccharides on the folate production of some folate-producing bacteria in media cultures or milk. International Dairy Journal, 27(1-2), 27–33. http://dx.doi.org/10.1016/j.idairyj.2012.06.006

Patel, K. R., & Sobczyńska-Malefora, A. (2017). The adverse effects of an excessive folic acid intake. European Journal of Clinical Nutrition, 71(2), 159–163. https://doi.org/10.1038/ejcn.2016.194

Rossi, M., Amaretti, A., & Raimondi, S. (2011). Folate production by probiotic bacteria. Nutrients, 3, 118–134. https://doi.org/10.3390/nu3010118

Russo, P., Capozzi, V., Arena, M. P., Spadaccino, G., Dueñas, M. T., López, P., Fiocco, D., & Spano, G. (2014). Riboflavin-overproducing strains of Lactobacillus fermentum for riboflavin-enriched bread. Applied Microbiology and Biotechnology, 98(8), 3691–3700. https://doi.org/10.1007/s00253-013-5484-7

Saini, R. K., Nile, S. H., & Keum, Y. S. (2016). Folates: Chemistry, analysis, occurrence, biofortification and bioavailability. Food Research International, 89, 1–13. https://doi.org/10.1016/j.foodres.2016.07.013

Sangurdekar, D. P., Zhang, Z., & Khodursky, A. B. (2011). The association of DNA damage response and nucleotide level modulation with the antibacterial mechanism of the anti-folate drug trimethoprim. BMC genomics, 12, 583. https://doi.org/10.1186/1471-2164-12-583

Shulpekova, Y., Nechaev, V., Kardasheva, S., Sedova, A., Kurbatova, A., Bueverova, E., ... & Ivashkin, V. (2021). The concept of folic acid in health and disease. Molecules, 26(12), 3731. https://doi.org/10.3390/molecules26123731

Thaler, C. J. (2014). Folate metabolism and human reproduction. Geburtshilfe und Frauenheilkunde, 74(09), 845–851. https://doi.org/10.1055/s-0034-1383058

Warzyszynska, J., & Kim, Y. I. (2014). Folate in human health and disease. eLS. Chichester, UK: John Wiley & Sons, Ltd, 1–14. https://doi.org/10.1002/9780470015902.a0002268.pub2

Waters, A. H., Mollin, D. L., Pope, J., & Towler, T. (1961). Studies on the folic acid activity of human serum. Journal of Clinical Pathology, 14(4), 335–344. https://doi.org/10.1136/jcp.14.4.335

Wegkamp, A. (2008). Modulation of folate production in lactic acid bacteria. Wageningen University and Research.

Yang, D. C., Blair, K. M., & Salama, N. R. (2016). Staying in shape: the impact of cell shape on bacterial survival in diverse environments. Microbiology and Molecular Biology Reviews, 80(1), 187–203. https://doi.org/10.1128/MMBR.00031-15

Zaritsky, A., Woldringh, C. L., Einav, M., & Alexeeva, S. (2006). Use of thymine limitation and thymine starvation to study bacterial physiology and cytology. Journal of Bacteriology, 188(5), 1667–1679. https://doi.org/10.1128/JB.188.5.1667-1679.2006

Zhang, J., Cai, D., Yang, M., Hao, Y., Zhu, Y., Chen, Z., Azis, T., Sarwar, A., & Yang, Z. (2020). Screening of folate-producing lactic acid bacteria and modulatory effects of folate-biofortified yogurt on gut dysbacteriosis of folate-deficient rats. Food & Function, 11(7), 6308–6318. https://doi.org/10.1039/d0fo00480d

Zhang, Y., Chowdhury, S., Rodrigues, J. V., & Shakhnovich, E. (2021). Development of antibacterial compounds that constrain evolutionary pathways to resistance. Elife, 10, e64518. https://doi.org/10.7554/eLife.64518

Zheng, Y., & Cantley, L. C. (2019). Toward a better understanding of folate metabolism in health and disease. Journal of Experimental Medicine, 216(2), 253–266. https://doi.org/10.1084/jem.20181965

Authors

Fenny Amilia Mahara
Lilis Nuraida
lnuraida@apps.ipb.ac.id (Primary Contact)
Siti Nurjanah
MaharaF. A., NuraidaL., & NurjanahS. (2024). The Manipulation of Folate Biosynthesis in Lactic Acid Bacteria with a Folate Analog and Enhancers. Jurnal Teknologi Dan Industri Pangan, 35(2), 162-171. https://doi.org/10.6066/jtip.2024.35.2.162

Article Details