Produksi Hidrolisat Protein Kacang Koro Benguk dengan Aktivitas Penghambat Kerja Enzim Pengkonversi Angiotensin melalui Kombinasi Fermentasi dan Hidrolisis Enzimatik
Abstract
Mucuna bean (Mucuna pruriens L.) is a legume having high protein content which has the potential as a source of bioactive peptides. One of the bioactive peptides is an angiotensin-converting enzyme (ACE) inhibitor, thus, mucuna beans might be used as a potential source of antihypertensive compounds. This study aimed to increase the functionality of proteins from mucuna beans as ACE inhibitors using a combination of fermentation and enzymatic hydrolysis followed by membrane filtration. The mucuna beans were fermented for 0, 24, 48, 96, and 144 h. The highest ACE inhibitory activity of 54.37%, was obtained by fermentation of the beans at 48 h, with a protein content of 20.82 mg/mL. The 48 h fermented mucuna beans were further hydrolyzed using alcalase or neutrase and subsequently filtered with UF membranes having 20,10 and 5 kDa cut-off. The enzymatic hydrolysis followed by membrane filtration increased the ACE inhibitory activity of mucuna beans. The neutrase hydrolysates resulting from 5 kDa membrane filtration showed the best ACE inhibitory activity (62.96% with a protein content of 10.39 mg/mL). A combination of fermentation and enzymatic hydrolysis followed by filtration using UF-membrane was able to produce ACE inhibitory peptides from mucuna beans. The potential of mucuna beans peptides as ACE inhibitors was due to the presence of negatively charged amino acid residues such as Asp and Glu, positively charged amino acids such as Arg and Lys, and hydrophobic amino acids such as Val, Leu, Ala, and Ile.
References
Aguilar JGS, Cason VG, de Castro RJS. 2018. Improving antioxidant activity of black bean protein by hydrolysis with protease combinations. Int J Food Sci Technol 54: 34-41. https://doi.org/10.1111/ijfs.13898
Al Shukor N, Van Camp J, Gonzales GB, Staljans-sens D, Struijs K, Zotti MJ, Raes K, Smagghe G. 2013. Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: A study of structure activity relationships. J Agric Food Chem 61: 11832-11839. https://doi.org/10.1021/jf404641v
Aluko RE. 2015. Antihypertensive peptides from food proteins. Annu Rev Food Sci Technol 6: 235-262. https://doi.org/10.1146/annurev-food-022814-015520
Aluko RE, Girgih AT, He R, Malomo S, Li H, Offen-genden M, Wu J. 2015. Structural and functional characterization of yellow field pea seed (Pisum sativum L.) protein-derived antihypertensive peptides. Food Res Int 77: 10-16. https://doi.org/10.1016/j.foodres.2015.03.029
[AOAC] Association of Official Analytical Chemists. 2012. Official methods of analysis of AOAC international. 19th Edition. Washington DC (US): AOAC International.
Aydemir LY, Yemenicioglu A. 2013. Are protein-bound phenolic antioxidants in phenolic unseen part of iceberg?. J Plant Biochem Physiol 1: 1-4. https://doi.org/10.4172/2329-9029.1000118
Chalamaiah M, Jyothirmayi T, Diwan PV, Dinesh KB. 2015. Antioxidant activity and functional proper-ties of enzymatic protein hydrolysates from common carp (Cyprinus carpio) roe (egg). J Food Sci Technol 52: 5817-5825. https://doi.org/10.1007/s13197-015-1714-6
Chel-Guerrero L, Galicia-Martínez S, Acevedo-Fernández JJ, Santaolalla-Tapia J, Betancur-Ancona D. 2017. Evaluation of hypotensive and antihypertensive effects of velvet bean (Mucuna pruriens L.) Hydrolysates. J Med Food 20: 37-45. https://doi.org/10.1089/jmf.2016.0080
Chen H-J, Dai F-J, Chen C-Y, Fan S-L, Zheng J-H, Huang Y-C, Chau C-F, Lin Y-S, Chen C-S. 2021. Evaluating the antioxidants, whitening and anti-aging properties of rice protein hydrolysates. Molecules 26: 1-16. https://doi.org/10.3390/molecules26123605
Ciau-Solís NA, Acevedo-Fernández JJ, Betancur-Acona D. 2018. In vitro renin-angiotensin system inhibition and in vivo antihypertensive activity of peptide fractions from Lima bean (Phaseolus lunatus L.). J Sci Food Agric 98: 781-786. https://doi.org/10.1002/jsfa.8543
Daliri EB-M, Lee BH, Kim J-H, Oh D-H. 2018. Novel angiotensin I-converting enzyme inhibitory peptides from soybean protein isolates fermented by Pediococcus pentosaceus SDL1409. LWT-Food Sci Technol 93: 88-93. https://doi.org/10.1016/j.lwt.2018.03.026
Ee K-Y, Khoo L-Y, Ng W-J, Wong F-C. 2019. Effects of Bromelain and trypsin hydrolysis on the phytochemical content, antioxidant activity, and antibacterial activity of roasted butterfly pea seeds. Processes 7: 1-13. https://doi.org/10.3390/pr7080534
García-Moreno PJ, Espejo-Carpio FJ, Guadix A, Guadix EM. 2015. Production and identification of angiotensin I-converting enzyme (ACE) inhibitory peptides from mediterranean fish discards. J Funct Foods 18: 95-105. https://doi.org/10.1016/j.jff.2015.06.062
Girgih AT, Udenigwe CC, Aluko RE. 2011. In vitro antioxidant properties of hemp seed (Cannabis sativa L.) protein hydrolysate fractions. J Am Oil Chem Soc 88: 381-389. https://doi.org/10.1007/s11746-010-1686-7
Guo Y, Pan D, Tanokura M. 2009. Optimisation of hydrolysis conditions for the production of the angiotensin-I converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology. Food Chem 114: 328-333. https://doi.org/10.1016/j.foodchem.2008.09.041
He Z, Liu G, Qiao Z, Cao Y, Song M. 2021. Novel angiotensin-I converting enzyme inhibitory peptides isolated from rice wine lees: Purification, characterization, and structure-activity relationship. Front Nutr 8: 1-12. https://doi.org/10.3389/fnut.2021.746113
Hernández-Ledesma B, del Mar Contreras M, Recio I. 2011. Antihypertensive peptides: Production, bioavailability and incorporation into foods. Adv Colloid Interface Sci 165: 23-35. https://doi.org/10.1016/j.cis.2010.11.001
Herrera-Chalé FG, Ruiz-Ruiz JC, Acevedo Fernán-dez JJ, Betancur Ancona DA, Segura-Campos MR. 2014. ACE inhibitory, hypotensive and antioxidant peptide fractions from Mucuna pruriens proteins. Process Biochem 49: 1691-1698. https://doi.org/10.1016/j.procbio.2014.06.021
Hong G-P, Min S-G, Jo Y-J. 2019. Anti-oxidative and anti-aging activities of porcine by-product collagen hydrolysates produced by commercial proteases: Effect of hydrolysis and ultrafiltration. Molecules 24: 1104. https://doi.org/10.3390/molecules24061104
Iamsaard S, Arun S, Burawat J, Yannasithinon S, Tongpan S, Bunsueb S, Lapyuneyong N, Choowong-in P, Tangsrisakda N, Chaimontri C, Sukhorum W. 2020. Evaluation of antioxidant capacity and reproductive toxicity of aqueous extract of Thai Mucuna pruriens seeds. J Integr Med 18: 265-273. https://doi.org/10.1016/j.joim.2020.03.003
İçöz D, Sumnu G, Sahin S. 2007. Color and texture development during microwave and conventional baking of breads. Int J Food Prop 7: 201-213. https://doi.org/10.1081/JFP-120025396
Jakubczyk A, Karaś M, Złotek U, Szymanowska U. 2017. Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean (Phaseolus vulgaris L.) seeds. Food Res Int 100: 489-496. https://doi.org/10.1016/j.foodres.2017.07.046
Kavitha K. 2018. Evaluation of total phenols, total flavonoids, antioxidant, and anticancer activity of mucuna pruriens seed extract. Asian J Pharm Clin Res 11: 242-246. https://doi.org/10.22159/ajpcr.2018.v11i3.22999
[Kemenkes] Kementrian Kesehatan Republik Indonesia. 2019. Laporan Nasional RISKESDAS 2018. Badan Penelitian dan Pengembangan Kesehatan. Kementrian Kesehatan RI. Jakarta.
Ko S-C, Lee J-K, Byun H-G, Lee S-C, Jeon Y-J. 2012. Purification and characterization of
angiotensin I-converting enzyme inhibitory peptide from enzymatic hydrolysates of Styela clava flesh tissue. Process Biochem 47: 34-40. https://doi.org/10.1016/j.procbio.2011.10.005
Koley TK, Maurya A, Tripathi A, Singh BK, Singh M, Bhutia TL, Tripathi PC, Singh B. 2018. Antioxi-dant potential of commonly consumed underutilized leguminous vegetables. Int J Veg Sci 25: 362-372. https://doi.org/10.1080/19315260.2018.1519866
Laemmli U. 1970. Cleavage of structural proteins during the assembly of the head of bacterio-phage T4. Nat 227: 680-685. https://doi.org/10.1038/227680a0
Lee SY, Hur SJ. 2019. Purification of novel angiotensin converting enzyme inhibitory peptides from beef myofibrillar proteins and analysis of their effect in spontaneously hypertensive rat model. Biomed Pharmacother 116: 1-7. https://doi.org/10.1016/j.biopha.2019.109046
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the folin phenol reagent. J Biol Chem 193: 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
Mnif A, Mouelhi M, Hamrouni B. 2017. Understanding of phenolic compound retention mechanisms on PES-UF membrane. Turkish J Chem 41: 813-825. https://doi.org/10.3906/kim-1611-64
Morais HA, Silvestre MPC, Silveira JN, Silva ACS, Silva VDM, Silva MR. 2013. Action of a pancreatin and an Aspergillus oryzae protease on whey proteins: Correlation among the methods of analysis of the enzymatic hydrolysates. Brazilian Arch Biol Technol 56: 985-995. https://doi.org/10.1590/S1516-89132013000600014
Mosquera M, Giménez B, Ramos S, López-Caballero ME, del Carmen Gómez-Guillén M, Montero P. 2015. Antioxidant, ACE-inhibitory, and antimicrobial activities of peptide fractions obtained from dried giant squid tunics. J Aquat Food Prod Technol 25: 444-455. https://doi.org/10.1080/10498850.2013.819543
Mótyán JA, Tóth F, Tőzsér J. 2013. Research applications of proteolytic enzymes in molecular biology. Biomolecules 3: 923-942. https://doi.org/10.3390/biom3040923
Mujoo R, Trinh DT, Ng PKW. 2003. Characterization of storage proteins in different soybean varieties and their relationship to tofu yield and texture. Food Chem 82: 265-273. https://doi.org/10.1016/S0308-8146(02)00547-2
Mulyani L, Kartadarma E, Fitrianingsih SP. 2016. Manfaat dan kandungan kacang kara benguk (Mucuna pruriens L.) sebagai obat herbal. Prosiding Farmasi. Volume ke-2. 351–357.
Paiva L, Lima E, Neto AI, Baptista J. 2017. Angioten-sin I-converting enzyme (ACE) inhibitory activity, antioxidant properties, phenolic content and amino acid profiles of Fucus spiralis L. Protein hydrolysate fractions. Mar Drugs 15: 311. https://doi.org/10.3390/md15100311
Pertiwi MGP, Marsono Y, Indrati R. 2019. In vitro gastrointestinal simulation of tempe prepared from koro kratok (Phaseolus lunatus L.) as an angiotensin-converting enzyme inhibitor. J Food Sci Technol 57: 1847-1855. https://doi.org/10.1 007/s13197-019-04219-1
Purwanti E, Prihanta W, Permana TI. 2019. Karakterisasi kandungan protein berbagai aksesi koro lokal sebagai upaya penggalian sumber pangan fungsional. Proceeding Biol Educ Conf 16: 172-175.
Puspitojati E, Cahyanto MN, Marsono Y, Indrati R. 2019a. Production of angiotensin-I-converting enzyme (ACE) inhibitory peptides during the fermentation of jack bean (Canavalia ensiformis) tempe. Pakistan J Nutr 18: 464-470. https://doi.org/10.3923/pjn.2019.464.470
Puspitojati E, Indrati R, Cahyanto MN, Marsono Y. 2019b. Formation of ACE-inhibitory peptides du-ring fermentation of jack bean tempe inoculated by usar Hibiscus tiliaceus leaves starter. IOP Conference Series: Earth and Environmental Science. International Conference on Food Science and Technology. 2019 Nov 28–29. Semarang, Indonesia. https://doi.org/10.1088/1755-1315/292/1/012022
Rahayu NA, Cahyanto MN, Indrati R, Mada UG, No JF. 2019. Pola perubahan protein koro benguk (Mucuna pruriens) selama fermentasi tempe menggunakan inokulum raprima. Agritech 39: 128-135. https://doi.org/10.22146/agritech.41736
Ramakrishnan V, Ghaly AE, Brooks MS, Budge SM. 2013. Enzymatic extraction of amino acids from fish waste for possible use as a substrate for production of jadomycin. Enzym Eng 2: 1-9.
Rayaprolu S, Hettiarachchy N, Horax R, Satchitha-nandam E, Chen P, Mauromoustakos A. 2015. Amino acid profiles of 44 soybean lines and ACE‑I inhibitory activities of peptide fractions from selected lines. J Am Oil Chem Soc 92: 1023-1033. https://doi.org/10.1007/s11746-015-2655-y
Rizkaprilisa W, Marsono Y, Indrati R. 2020. Bioactive peptide tempe made from Mucuna pruriens (L) DC as an inhibitor of angiotensin-I-converting enzyme (ACE) in a digestion simulation. Prev Nutr Food Sci 25: 93-97. https://doi.org/10.3746/pnf.2020.25.1.93
Sbroggio MF, Montilha MS, Ribeiro V, Figueiredo G De, Georgetti SR, Kurozawa LE. 2016. Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Sci Technol 36: 375-381. https://doi.org/10.1590/1678-457X.000216
Segura-Campos MR, Tovar-Benítez T, Chel-Guerrero L, Betancur-Ancona D. 2013. Functional and bioactive properties of Velvet bean (Mucuna pruriens) protein hydrolysates produced by enzymatic treatments. J Food Meas Charact 8: 61-69. https://doi.org/10.1007/s1169 4-013-9165-0
Sharma R, Garg P, Kumar P, Bhatia SK, Kulshrestha S. 2020. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 6: 1-20. https://doi.org/10.3390/fermentation6040106
Singh BP, Vij S, Hati S. 2014. Functional significance of bioactive peptides derived from soybean. Peptides 54: 171-179. https://doi.org/10.1016/j.peptides.2014.01.022
Sitanggang AB, Lesmana M, Budijanto S. 2020a. Membrane-based preparative methods and bioactivities mapping of tempe-based peptides. Food Chem 329: 1-10. https://doi.org/10.1016/j.foodchem.2020.127193
Sitanggang AB, Putri JE, Palupi NS, Hatzakis E, Syamsir E, Budijanto S. 2021a. Enzymatic pre-paration of bioactive peptides exhibiting ace inhibitory activity from soybean and velvet bean: A systematic review. Molecules 26: 1-14. https://doi.org/10.3390/molecules26133822
Sitanggang AB, Sinaga WSL, Wie F, Fernando F, Krusong W. 2020b. Enhanced antioxidant acti-vity of okara through solid state fermentation of GRAS fungi. Food Sci Technol 40: 178-186. https://doi.org/10.1590/fst.37218
Sitanggang AB, Sumitra J, Budijanto S. 2021b. Continuous production of tempe-based bioactive peptides using an automated enzymatic mem-brane reactor. Innov Food Sci Emerg Technol 68: 1-10. https://doi.org/10.1016/j.ifset.2021.102 639
Sorriento D, De Luca N, Trimarco B, Iaccarino G. 2018. The antioxidant therapy: New insights in the treatment of hypertension. Front Physiol 9: 1-11. https://doi.org/10.3389/fphys.2018.00258
Tuz MAO, Campos MRS. 2017. Purification of Mucuna pruriens (L) peptide fractions and evaluation of their ACE inhibitory effect. Biocatal Agric Biotechnol 10: 390-395. https://doi.org/10.1016/j.bcab.2017.05.001
Wan Mohtar WAAQI, Hamid AA, Abd-Aziz S, Muhamad SKS, Saari N. 2014. Preparation of bioactive peptides with high angiotensin con-verting enzyme inhibitory activity from winged bean [Psophocarpus tetragonolobus (L.) DC] seed. J Food Sci Technol 51: 3658-3668. https://doi.org/10.1007/s13197-012-0919-1
[WHO] World Health Organization. 2019. Hypertension. https://www.who.int/news-room/fact-sheet s/detail/hypertension [03 September 2020].
Xu X, Qiao Y, Shi B, Dia VP. 2021. Alcalase and bromelain hydrolysis affected physicochemical and functional properties and biological activities of legume proteins. Food Struct 27: 1-10. https://doi.org/10.1016/j.foostr.2021.100178
Yun YR, Park SH. 2018. Antioxidant activities of brown teff hydrolysates produced by protease treatment. J Nutr Heal 51: 599-606. https://doi.org/10.4163/jnh.2018.51.6.599
Zarei M, Abidin NBZ, Auwal SM, Chay SY, Haiyee ZA, Sikin AM, Saari N. 2019. Angiotensin converting enzyme (ACE) peptide interactions: Inhibition kinetics, in silico molecular docking and stability study of three novel peptides generated from palm kernel cake proteins. Biomolecules 9: 1-12. https://doi.org/10.3390/biom9100569
Zou T-B, He T-P, Li H-B, Tang H-W, Xia E-Q. 2016. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules 21: 1-14. https://doi.org/10.3390/molecules21010072