Karakteristik fisikokimia tablet berbasis mikrokapsul minyak mata tuna dan spirulina Evaluation of physicochemical characteristics of tuna’s eye oil microcapsule-spirulina tablets

Fahri Sinulingga, Wini Trilaksani, Iriani Setyaningsih

Abstract

Omega-3 is very important for preventing the effects of decreased intelligence.  The limitation of omega-3 is that it is highly susceptible to oxidation, which necessitates the inclusion of additional substances with antioxidant properties. Spirulina platensis can be used to prevent the oxidation of omega-3 in the form of dry dosages. The objective of this study was to identify the optimal formulation for incorporating microcapsules of tuna eye oil and S. Platensis in the production of tablets by considering physicochemical parameters, peroxide value, and water activity. The present study encompasses three distinct phases: extraction and encapsulation of tuna eye oil, cultivation of S. platensis, and formulation of tablets using the compression method. Treatments involving the tablet formula were classified into four distinct categories: F1 (containing 300 mg of tuna eye oil microcapsules and 140 mg of vitamin C), F2 (comprising 280 mg of tuna eye oil microcapsules and 160 mg of Spirulina culture), F3 ( 300 mg of tuna eye oil microcapsules and 140 mg of Spirulina culture), and F4 (containing 300 mg of tuna eye oil microcapsules and 140 mg of commercial Spirulina). The examination demonstrated that the eye oil derived from tuna satisfied the criteria for fish oil quality, with an acid value of 0.26±0.01 mg KOH/g, a peroxide value of 4.07±0.25 meq/kg, an anisidine value of 8.21±0.15 meq/kg, and a total oxidation value of 16.35±0.18 meq/kg, as well as a microencapsulation efficiency of 91.14%. The cultivation method employed in this study also ensured that the resulting Spirulina met the acceptable quality standards. The dry Spirulina had a water content of 9.02±0.07%, an ash content of 6.24±0.06%, a protein content of 57.55±0.21%, a fat content of 2.07±0.02%, and a carbohydrate content of 25.12±0.16%. The F3 tablet formulation was the most effective treatment, with physical properties that met the standards for tablet quality. It has a firmness value of 0.55%, disintegration time of less than 12 min, and fat content of 13.57%.  The F3 formula demonstrated greater stability with respect to peroxide value and water activity during the storage period than the other formulas.

References

Afriani, S., Uju, & Setyaningsih, I. (2018). Komposisi kimia Spirulina platensis yang dikultivasi dalam fotobioreaktor dengan fotoperiode berbeda. Jurnal Ilmu Pertanian Indonesia, 21(3), 471-479. https://doi.org/10.17844/jphpi.v21i3.24719
Ahmad, M. G., Setyaningsih, I., & Trilaksani, W. (2019). Formulasi dan bioaktivitas suplemen tablet berbasis Spirulina dan hidrolisat kolagen kulit ikan nila. Jurnal Pengolahan Hasil Perikanan Indonesia, 22(3), 453-463. https://doi.org/10.17844/jphpi.v22i3.28925
Aitta, E., Marsol-Vall, A., Damerau, A., & Yang, B. (2021). Enzyme-assisted extraction of fish oil from whole fish and by-products of baltic herring (Clupea harengus membras). Foods, 10(8), 1-12. https://doi.org/10.3390/foods10081811
Alamilla-Beltran, L., Chanona-Perez, J. J., Jimenez-Aparicio, A. R., & Gutierrez-Lopez, G. F. (2005). Description of morphological changes of particles along spray drying. Journal of Food Engineering, 67(1-2), 179-184. https://doi.org/10.1016/j.jfoodeng.2004.05.063
Allada, R. (2016). Hygroscopicity categorization of pharmaceutical solids by gravimetric sorption analysis: A systematic approach. Asian Journal of Pharmaceutics (AJP), 10(4), 179-184. https://doi.org/10.22377/ajp.v10i04.867
American Oil Chemists Society. (1997). Official Methods and Recommended Practices of AOCS International.
American Oil Chemists Society. (1998). Free Fatty Acids. In: Official Methods and Recommended Practices of the American Oil Chemists Society.
Amirdivani, S., & Baba, A. S. (2011). Changes in yogurt fermentation characteristics, and antioxidant potential and in vitro inhibition of angiotensin-1 converting enzyme upon the inclusion of peppermint, dill and basil. LWT-Food Science and Technology, 44 (6), 1458-1464. https://doi.org/10.1016/j.lwt.2011.01.019
Annamalai, J., Aliyamveetil Abubacker, Z., Lakshmi, N. M., & Unnikrishnan, P. (2020). Microencapsulation of fish oil using fish protein hydrolysate, maltodextrin, and gum Arabic: Effect on structural and oxidative stability. Journal of Aquatic Food Product Technology, 29(3), 293-306. https://doi.org/10.1080/10498850.2020.1723765
Association of Official Analytical Chemist. (2005). Official Methods of Analysis of the Association of Official Analytical of Chemist.
Augsburger, L., L., & Hoag, S., W. (2008). Pharmaceutical dosage forms: tablets. Rational design and formulation, vol. 2. 3rd ed. Informa Healthcare.
Badan Pengawas Obat dan Makanan. (2014). Persyaratan Mutu Obat Tradisional. BPOM Nomor 12 Tahun 2014.
Badan Standardisasi Nasional. (2018). Spirulina spp kering- syarat mutu dan pengolahan. SNI 8469:2018.
Bajac, J., Nikolovski, B., Lončarević, I., Petrović, J., Bajac, B., Đurović, S., & Petrović, L. (2022). Microencapsulation of juniper berry essential oil (Juniperus communis L.) by spray drying: microcapsule characterization and release kinetics of the oil. Food Hydrocolloids, 125 (1), 2-10. https://doi.org/10.1016/j.foodhyd.2021.107430
Bortolini, D. G., Maciel, G. M., Fernandes, I. D. A. A., Pedro, A. C., Rubio, F. T. V., Brancod, I. G., & Haminiuk, C. W. I. (2022). Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chemistry: Molecular Sciences, 5(10), 1-13. https://doi.org/10.1016/j.fochms.2022.100134
Cao, X., Luo, Q., Song, F., Liu, G., Chen, S., Li, Y., & Lu, Y. (2023). Effects of oxidative torrefaction on the physicochemical properties and pyrolysis products of hemicellulose in bamboo processing residues. Industrial Crops and Products, 191, 1-8. https://doi.org/10.1016/j.indcrop.2022.115986
Codex Alimentarius Commission. (2017). Standard for Fish Oils CODEX STAN 329-2017.
Dawson, P., Al-Jeddawi, W., & Remington, N. (2018). Effect of Freezing on the shelf life of Salmon. International Journal Food Science, 1(12), 1-12. https://doi.org/10.1155/2018/1686121
Departemen Kesehatan Republik Indonesia. (1995). Farmakope Indonesia. Edisi IV.
Di Giorgio, L., Salgado, P. R., & Mauri, A. N. (2019). Encapsulation of fish oil in soybean protein particles by emulsification and spray drying. Food Hydrocolloids, 87(12), 891-901. https://doi.org/10.1016/j.foodhyd.2018.09.024
Djordjevic, D., McClements, D. J., & Decker, E. A. (2004). Oxidative stability of whey protein‐stabilized oil‐in‐water emulsions at pH 3: Potential ω‐3 fatty acid delivery systems (Part B). Journal of Food Science, 69(5), 56-62. https://doi.org/10.1111/j.1365-2621.2004.tb10697.x
Ekantari, N., Harmayani, E., Pranoto, Y., & Marsono, Y. (2017). Calcium of Spirulina platensis has higher bioavailability than those of calcium carbonate and high-calcium milk in Sprague Dawley rats fed with vitamin D-deficient diet. Pakistan Journal of Nutrition, 16(3), 179-186. https://doi.org/10.3923/pjn.2017.179.186
Eyjolfsson, R. (2001). Mixing of pharmaceutical powders in tablet manufacture. Pharmazie. 56(7), 590–1.
Figura, L. O., & Teixeira, A. A. (2023). Water activity. In Food Physics: Physical Properties-Measurement and Applications (pp. 1-57). Cham: Springer International Publishing.
Fontana, A., J. (2007). Appendices D: Minimum water activity limits for growth of microorganisms. Water Activity in Foods: Fundamentals and Applications. Blackwell Publishing.
Gamarro, E. G., Orawattanamateekul, W., Sentina, J., & Gopal, T. S. (2013). By-products of tuna processing. GLOBEFISH Research Programme, 112(12), 1-48.
Gaonkar, A., Vasisht, N., Khare, A., & Sobel, R. (2014). Microencapsulation in the food industry: a practical implementation guide. Academic Press.
García-Moreno, P. J., Pelayo, A., Yu, S., Busolo, M., Lagaron, J. M., Chronakis, I. S., & Jacobsen, C. (2018). Physicochemical characterization and oxidative stability of fish oil-loaded electrosprayed capsules: Combined use of whey protein and carbohydrates as wall materials. Journal of Food Engineering, 231(13), 42-53. https://doi.org/10.1016/j.jfoodeng.2018.03.005
Hanani, T., Widowati, I., & Susanto, A. B. (2020). Kandungan senyawa beta karoten pada Spirulina platensis dengan perlakuan perbedaan lama waktu pencahayaan. Buletin Oseanografi Marina April, 9(1), 55-58. https://doi.org/10.14710/buloma.v9i1.24681
Huriyah, B., Setyaningsih, I., & Trilaksani, W. (2019). Formulasi tablet kaya gizi dan antioksidan berbasis Spirulina, virgin fish oil mata tuna, dan ekstrak buah bakau. Jurnal Pascapanen dan Bioteknologi Perikanan dan Kelautan, 14(2), 117-128. http://dx.doi.org/10.15578/jpbkp.v14i2.606
International Union on Pure an Applied Chemistry. (1987). Standard methods for the analysis of oils arld fats and derivatives, 7th. Paquot C dan Hautfenne A (ed). Oxford (UK): Blackwell Scientific.
Jamshidi, A., Cao, H., Xiao, J., & Simal-Gandara, J. (2020). Advantages of techniques to fortify food products with the benefits of fish oil. Food Research International, 137(8), 109353. https://doi.org/10.1016/j.foodres.2020.109353
Joyce, P., Gustafsson, H., & Prestidge, C. A. (2018). Enhancing the lipase-mediated bioaccessibility of omega-3 fatty acids by microencapsulation of fish oil droplets within porous silica particles. Journal of Functional Foods, 47(10), 491-502. https://doi.org/10.1016/j.jff.2018.06.015
Kementerian Kesehatan Republik Indonesia. (2021). Hasil Pemantauan Status Gizi Tahun 2020.
Koren, N., Simsa-Maziel, S., Shahar, R., Schwartz, B., & Monsonego-Ornan, E. (2014). Exposure to omega-3 fatty acids at early age accelerate bone growth and improve bone quality. The Journal of nutritional biochemistry, 25(6), 623-633. https://doi.org/10.1016/j.jnutbio.2014.01.012
Lubis, A., F., Purwaningsih, S., Tarman, K. (2016). Aktivitas antioksidan pada formula tablet teripang keling (Holothuria atra). Berkala Perikanan Terubuk, 44(2), 52-69.
Magnusdottir, A., Másson, M., & Loftsson, T. (2002). Self-association and cyclodextrin solubilization of NSAIDs. Journal of inclusion phenomena and macrocyclic chemistry, 44(6), 213-218.
Mohanty, B.P., Ganguly, S., Mahanty, A., Sankar, V., Anandan, R., Chakraborty, K., Paul, B.N., Sarma, D., Dayal, J.S., Venkateshwarlu, G., Mathew, S., Asha, K.K., Karunakaran, D., Mitra, T., Chanda, S., Shahi, N., Das, P., Akhtar, M.S, Vijayagopal, P., & Sridhar, N. (2016). DHA and EPA content and fatty acid profile of 39 food fishes from india. Biomed Research International, 1–14. https://doi.org/10.1155/2016/4027437
Mohammadi, M., Soltanzadeh, M., Ebrahimi, A. R., & Hamishehkar, H. (2022). Spirulina platensis protein hydrolysates: Techno-functional, nutritional and antioxidant properties. Algal Research, 65(1),1-10. https://doi.org/10.1016/j.algal.2022.102739
Mongenot, N., Charrier, S., & Chalier, P. (2000). Effect of ultrasound emulsification of cheese aroma encapsulation by carbohydrates. Journal of Agricultural and Food Chemistry, 489(13), 861–867. https://doi.org/10.1021/jf990494n
Mustapha, R.A., Bolajoko, O., Akinola, O.O. (2014). Omega-3 and Omega-6 Fatty Acids Potential of Smoked and Boiled Catfish (Clarias Gariepinus). Curr Res Nutr Food Sci, 2(2), 1-11. https://doi.org/10.12944/CRNFSJ.2.2.06
Noorannisa, S., & Ekantari, N. (2020). Stability of Spirulina platensis ice cream and shelf life prediction using accelerated shelf life test method based on physical and antioxidant analysis. Web of Conferences, 147, 03007. https://doi.org/10.1051/e3sconf/202014703007
Notonegoro, H., Setyaningsih, I., & Tarman, K. (2018). Kandungan senyawa aktif Spirulina platensis yang ditumbuhkan pada media walne dengan konsentrasi NaNO3 berbeda. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 13(2), 111-123. https://doi.org/10.15578/JPBKP.V13I2.555
Pramestia, S. P., Riyanto, B., & Trilaksani, W. (2015). Mikroenkapsulasi minyak ikan kaya asam lemak omega-3 sebagai bahan fortifikasi pada sup krim kepiting instan. Jurnal Pengolahan Hasil Perikanan Indonesia, 18(2), 162-176. https://doi.org/10.17844/jphpi.2015.18.2.162
Pudtikajorn, K., & Benjakul, S. (2020). Simple wet rendering method for extraction of prime quality oil from skipjack tuna eyeballs. European Journal of Lipid Science and Technology, 122(8),1-28. https://doi.org/10.1002/ejlt.202000077
Robertson, G., L. (2010). Food quality and indices of failure. Food Packaging and Shelf Life: A Practical Guide. CRC Press.
Rutar, J. M., Hudobivnik, M. J., Necemer, M., Mikus, K. V., Arcon, I., & Ogrinc, N. (2022). Nutritional quality and safety of the Spirulina dietary supplements sold on the slovenian market. Foods, 849(23), 1-20. https://doi.org/10.3390/foods11060849
Salih, A. W., Najim, S. M., & Al-Noor, J. M. (2021). Some physical, chemical and sensory properties of fish oil extracted from fish wastes by physical and chemical methods. Biological and applied environmental research, 5(12), 152-162. https://doi.org/10.51304/baer.2021.5.1.152
Saputra, J. S. E., Agustini, T. W., & Dewi, E. N. (2014). Pengaruh penambahan biomassa serbuk Spirulina platensis terhadap sifat fisik, kimia, dan sensori pada tablet hisap (Lozenges). Jurnal Pengolahan Hasil Perikanan Indonesia, 17(3), 281-291.
Sarada, D. V., Sreenath Kumar, C., & Rengasamy, R. (2011). Purified C-phycocyanin from Spirulina platensis (nordstedt) geitler: a novel and potent agent against drug resistant bacteria. World Journal of Microbiology and Biotechnology, 27, 779-783. https://doi.org/10.1080/09670262.2010.550386
Schacky, C. V. (2021). Importance of EPA and DHA blood levels in brain structure and function. Nutrients. 13(4), 1-18. https://doi.org/10.3390/nu13041074
Setyaningsih, I., Tarman, K., Satyantini, W. H., & Baru, D. A. (2013). Pengaruh waktu panen dan nutrisi media terhadap biopigmen Spirulina platensis. Jurnal Pengolahan Hasil Perikanan Indonesia, 16(3), 191-198.
Setyaningsih, I., Trilaksani, W., Masruroh, E., Fahleny, R., & Gentini, V. T. (2014). Kajian kerusakan tablet hisap Spirulina selama penyimpanan. Jurnal Ilmu Pertanian Indonesia, 19(3), 179-182.
Sittiprapaporn, P., Bumrungpert, A., Suyajai, P., & Stough, C. (2022). Effectiveness of fish Oil-DHA supplementation for cognitive function in Thai children: A randomized, doubled-blind, two-dose, placebo-controlled clinical trial. Foods, 11(17), 2-14. https://doi.org/10.3390/foods11172595
Soltan, S.S.A.M., & Gibson, R.A. (2008). Levels of omega 3 fatty acids in Australian seafood. Asia Pac. J. Clin. Nutr, 17(3): 385-390.
Syahrul, S., & Dewita, D. (2016). Suplemen makanan kesehatan (health food) bernutrisi tinggi dari Chlorella dan minyak ikan patin. Jurnal Pengolahan Hasil Perikanan Indonesia, 19(3), 251-255. https://doi.org/10.17844/jphpi.2016.19.3.251
Syukroni, I., & Trilaksani, W., & Uju. (2017). Recovery and valorization of snakehead fish (Channa striata) surimi wash water as stock albumin tablet. International Journal of Scientific & Technology Research, 6(11), 2277-8616
Trilaksani, W., Riyanto, B., Ramadhan, W., Sinulingga, F., & Fauziah, S. (2023). The characteristics of PUFAs-rich virgin fish oil as affected by size of tuna eye. Biodiversitas Journal of Biological Diversity, 24(12), 6545-6556. https://doi.org/10.13057/biodiv/d241216
Trilaksani, W., Riyanto, B., Azzahra, F., Santoso, J., & Tarman, K. (2020, September 9-11). Recovery of tuna virgin fish oil and formulation as a product model of emulsion food supplement [Conference session]. The World Seafood Congress 2019 – "Seafood Supply Chains of the Future: Innovation, Responsibility, Sustainability" 9–11 September 2019, Penang, Malaysia. IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/414/1/012027
Vestland, T. L., Jacobsen, Ø., Sande, S. A., Myrset, A. H., & Klaveness, J. (2015). Compactible powders of omega-3 and β-cyclodextrin. Food chemistry, 185(8), 151-158.
Vestland, T. L., Jacobsen, Ø., Sande, S. A., Myrset, A. H., & Klaveness, J. (2016). Characterization of omega-3 tablets. Food Chemistry, 197(11), 496-502. https://doi.org/10.1016/j.foodchem.2015.10.142
Wang, B., Adhikari, B., & Barrow, C. J. (2014). Optimisation of the microencapsulation of tuna oil in gelatin–sodium hexametaphosphate using complex coacervation. Food chemistry, 158(12), 358-365. https://doi.org/10.1016/j.foodchem.2014.02.135
Wang, R., Tian, Z., & Chen, L. (2011). A novel process for microencapsulation of fish oil with barley protein. Food research international, 44(9), 2735-2741. https://doi.org/10.1016/j.foodres.2011.06.013
World Bank Group. (2020). The human capital index 2020 update: the human capital in the time of COVID-19. www.worldbank.org/mfd.
World Health Organization. (2010). Nutrition Landscape Information System (NLIS) Country Profile Indicators: Interpretation Guide. World Health Organization.
World Health Organization. (2019). Global Nutrition Targets 2025: Stunting Policy Brief (WHO/NMH/NHD/14.3). World Health Organization.
Ye, C., Mu, D., Horowitz, N., Xue, Z., Chen, J., Xue, M., et al., & Zhou, W. (2018). Life cycle assessment of industrial scale production of spirulina tablets. Algal research, 34(8), 154-163. https://doi.org/10.1016/j.algal.2018.07.013
Zheng, Y., Zhu, F., Lin, D., Wu, J., Zhou, Y., & Mark, B. (2017). Optimization of formulation and processing of Moringa oleifera and spirulina complex tablets. Saudi Journal of Biological Sciences, 24(1), 122-126. https://doi.org/10.1016/j.sjbs.2016.08.017

Authors

Fahri Sinulingga
fahrisinulingga14@gmail.com (Primary Contact)
Wini Trilaksani
Iriani Setyaningsih
SinulinggaF., TrilaksaniW., & SetyaningsihI. (2024). Karakteristik fisikokimia tablet berbasis mikrokapsul minyak mata tuna dan spirulina: Evaluation of physicochemical characteristics of tuna’s eye oil microcapsule-spirulina tablets. Jurnal Pengolahan Hasil Perikanan Indonesia, 27(1), 1-15. https://doi.org/10.17844/jphpi.v27i1.49473

Article Details