Karakteristik pepton dari limbah jeroan ikan sidat (Anguilla bicolor) sebagai nutrien untuk pertumbuhan bakteri Peptone characteristics from eel (Anguilla bicolor) viscera as a nutrient for bacterial growth

Tati Nurhayati, Raden Hilman Wirayudha, Pipih Suptijah

Abstract

Eel viscera (Anguilla bicolor) waste from by-products of production is generally not used properly. The utilization of eel viscera waste needs to be processed because the protein content is high enough that it has the potential to utilize one of the products that have high economic value, namely fish peptone. This study was aimed to determine the optimum hydrolysis conditions of eel viscera hydrolysate using papain enzyme, to determine the chemical characteristics of eel viscera peptone and to apply eel viscera peptone as a medium for bacterial growth to be compared with commercial peptone. Peptone is made by hydrolysis process using papain enzyme with a time of 5 hours and a temperature of 60oC. The optimum concentration obtained with the use of the papain enzyme is 1,000 U/mg/g. The protein content of the peptone eel viscera is 82.1%, with a fat content of 0.93%. The peptone characteristics of eel viscera include 99.9% solubility; total nitrogen 13.12%; salt content 0.15%; and pH 6. Eel viscera peptone can be used as a nutrient in Escherichia coli bacteria growth media with a higher optical density (OD) value when compared to commercial peptone bactopeptone, but lower growth value when used on growth media for Staphylococcus aureus bacteria.

References

Ali, A., Al-Abri, E., Goddard, J., & Ahmed, S. I. (2013). Seasonal variability in the chemical composition of ten commonly consumed fish species from Oman. The Journal of Animal & Plant Sciences, 23(3), 806–812.
Anggraini, A., & Yunianta. (2015). Pengaruh suhu dan lama hidrolisis enzim papain terhadap sifat kimia, fisik dan organoleptik sari edamame. Jurnal Pangan dan Agroindustri, 3(3), 1015-1025.
Association of Official Analytical Chemists. (2005). Official methods of analysis of the association of official analytical chemists.
Association of Official Analytical Chemists. (2012). Official methods of analysis of the association of official analytical chemists.
Apriyantono, A., Fardiaz, D., Puspitasari, N., Sedarwati, L., & Budiyanto, S. (1989). Analisis Pangan. Institut Pertanian Bogor.
Aspmo, S. I., Horn, S. J., & Eijsink, V. G. H. (2005). Hydrolysates from Atlantic cod (Gadus morhua L,) viscera as components of microbial growth media. Process Biochemistry, 40(12), 3714–3722. https://doi.org/10.1016/j.procbio.2005.05.004
Barokah, G. R., Ibrahim, B., & Nurhayati, T. (2017). Characterization microencapsul pepton from spoiled by catch fish using spray drying methods. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(2), 401–412, https://doi.org/10.17844/jphpi.v20i2.18108
Bionutrient Technical Manual. (2006). Bionutrient Technical Manual.
Desniar, Nurhayati, T., Suhartono, M. T., Isa, E. M. (2006). Modifikasi media marine broth pada produksi inhibitor protease dari bakteri Acinetobacter baumanni yang hidup bersimbiosis dengan sponge Plakortis nigra. Buletin Teknologi Hasil Perikanan, 9(1), 70–79.
Fallah, M., Bahram, S., & Javadian, S. R. (2015). Fish peptone development using enzymatic hydrolysis of silver carp by-products as a nitrogen source in Staphylococcus aureus media. Food Science & Nutrition, 3(2), 153. https://doi.org/10.1002/fsn3.198
Food and Agriculture Organization. (2020). The State of World Fisheries and Aquaculture 2020. Food and Organization of the United Nations
Fernandes, P. (2016). Enzymes in fish and seafood processing. Frontiers in Bioengineering and Biotechnology, 4(JUL), 59, https://doi.org/10.3389/fbioe.2016.00059
Ghaly, A., Ramakrishnan, V., Brooks, M., Budge, S., & Dave, D. (2013). Fish processing wastes as a potential source of proteins, amino acids and oils: A critical review. J Microb Biochem Technol, 5(4), 107–129. https://doi.org/10.4172/1948-5948.1000110
Harris, L. G., Foster, S. J., Richards, R. G., Lambert, P., Stickler, D., & Eley, A. (2002). An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: Review. European Cells & Materials, 4, 39–60. https://doi.org/10.22203/eCM.v004a04
Haslaniza, H., Maskat, M. Y., Wan Aida, W. M., & Mamot, S. (2010). The effects of enzyme concentration, temperature and incubation time on nitrogen content and degree of hydrolysis of protein precipitate from cockle (Anadara granosa) meat wash water. International Food Research Journal, 17(1), 147–152.
Jamil, N. H., Halim, N. R. A., & Sarbon, N. M. (2016). Optimization of enzymatic hydrolysis condition and functional properties of eel (Monopterus sp.) protein using response surface methodology (RSM). International Food Research Journal, 23(1), 1–9.
Jaziri, A. A., Setijawati, D., Yufidasari, H. S., Pratomo, M. D., Wardani, D. W., Ersyah, D., & Huda, N. (2020). Characteristics of peptones from grouper (Epinephelus fuscoguttatus) and parrotfish (Scarus javanicus) head by-products as bacterial culture media. Journal of Biotech Research, 11, 1–12.
Khalil, A. (2012). Protein characterization of the aqueous soluble phase of acidified and autolyzed bolti fish (Tilapia nilotica) viscera. Asian Journal of Biotechnology, 4(3), 108–119. https://doi.org/10.3923/ajbkr.2012.108.119
Kosasih, W., Ratnaningrum, D., Endah, E. S., Pudjiraharti, S., & Priatni, S. (2018). Scaling up process for process for fish peptone production. IOP Conference series: Earth and environmental science, 160. https://doi.org/10.1088/1755-1315/160/1/012007
Nafsiyah, I., Nurilmala, M., & Abdullah, A. (2018). Nutrient composition of eel Anguilla bicolor bicolor and Anguilla marmorata. Jurnal Pengolahan Hasil Perikanan Indonesia, 21(3), 504–512. https://doi.org/10.17844/jphpi.v21i3.24733
Nollet, L. M. L. (1996). Handbook of food analysis amino acid. Marcel Dekker Inc
Nurhayati, T., Desniar, & Suhandana, M. (2013). Pembuatan pepton secara enzimatis menggunakan bahan baku jeroan ikan tongkol. Jurnal Pengolahan Hasil Perikanan Indonesia, 16(1). https://doi.org/10.17844/JPHPI.V16I1.8112
Nurhayati, T., Ibrahim, B., Suptijah, P., Salamah, E., Fitra, R. N., Rizky, E., & Astuti, W. (2015). Karakterisasi peptin ikan hasil tangkap sampingan tidak layak konsumsi sebagai sumber nutrien pertumbuhan mikroorganisme. Jurnal Teknologi Industri Pertanian, 25(1), 68–77.
Ovissipour, M., Abedian, K. A., Motamedzadegan, A., & Nazari, R. M. (2010). Optimization of enzymatic hydrolysis of visceral waste proteins of yellowfin tuna (Thunnus albacares). Food and Bioprocess Technology, 5(2), 696–705. https://doi.org/10.1007/s11947-010-0357-x
Omayma, M. A. T. L. M., Hassouba, M. M., & Eman, E. E. (2013). Effect of methodology on the determination of total volatile basic nitrogen as an index of quality of meat and fish. Egyptian Journal of Food Safety, 1(2), 23-34. https://doi.org/10.21608/ejfsj.2013.135900
Poernomo, A., & Buckle, K. A. (2002). Crude peptones from cowtail ray (Trygon sephen) viscera as microbial growth media. World Journal of Microbiology and Biotechnology, 18(4), 337–344. https://doi.org/10.1023/A:1015208519709
Priscilla, V., & Jose, E. Z. (2018). Optimization of enzymatic hydrolysis of viscera proteins of rainbow trout (Oncorhynchus mykiss). Advance Journal of Food Science and Technology, 16, 292–300. https://doi.org/10.19026/ajfst.16.5970
Rianingsih, L., Ibrahim, & Apri, D. A. (2016). Chemical characteristic of fish sauce from sea cat fish (Arius sp.) viscera fermented with different salt concentration.Indonesian Journal of Fisheries Science and Technology, 11(2), 115–119. https://doi.org/10.14710/ijfst.11.2.115-119
Safari, R., Motamedzadegan, A., Ovissipour, M., Regenstein, J. M., Gildberg, A., & Rasco, B. (2009). Use of hydrolysates from yellowfin tuna (Thunnus albacares) heads as a complex nitrogen source for lactic acid bacteria. Food and Bioprocess Technology, 5(1), 73–79. https://doi.org/10.1007/s11947-009-0225-8
Saputra, D., & Nurhayati, T. (2013). Produksi dan aplikasi pepton ikan selar untuk media pertumbuhan bakteri. Jurnal Pengolahan Hasil Perikanan Indonesia, 16(3). https://doi.org/10.17844/JPHPI.V16I3.8059
Setijawati, D., Jaziri, A. A., Yufidasari, H. S., Pratomo, M. D., Wardani, D. W., Ersyah, D., & Huda, N. (2020). Characteristics and use of peptones from catfish (Clarias gariepinus) and pangas catfish (Pangasius pangasius) heads as bacterial growth media. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 15(1), 19–29. https://doi.org/10.15578/squalen.v15i1.437
Shirahigue, L. D., Ribeiro, I. S., Sucasas, L. F., Anbe, L., Vaz-Pires, P., & Oetterer, M. (2018). Peptones in silage from tilapia (Oreochromis niloticus) and cobia (Rachycentron canadum) waste as a culture medium for bioprocesses. Journal of Aquatic Food Product Technology, 27(6), 712–721. https://doi.org/10.1080/10498850.2018.1484830
Shon, J., Eun, J. B., Eo, J. H., & Hwang, S. J. (2011). Effect of processing conditions on functional properties of collagen powder from skate (Raja kenojei) skins. Food Science and Biotechnology, 20(1), 99–106. https://doi.org/10.1007/s10068-011-0014-9
Shu, G., Huang, J., Bao, C., Meng, J., Chen, H., & Cao, J. (2018). Effect of different proteases on the degree of hydrolysis and angiotensin i-converting enzyme-inhibitory activity in goat and cow milk. Biomolecules, 8(4). https://doi.org/10.3390/biom8040101
Srikandace, Y., Priatni, S., Pudjiraharti, S., Kosasih, W., & Indrarti, L. (2017). Kerong fish (Terapon jarbua) peptone production using papain enzyme as nitrogen source in bacterial media. IOP Conference series: Earth and environmental science, 60(1), 012005. https://doi.org/10.1088/1755-1315/60/1/012005
Tenyang, N., Womeni, H. M., Linder, M., Tiencheu, B., Villeneuve, P., & Mbiapo, F. (2014). The chemical composition, fatty acid, amino acid profiles and mineral content of six fish species commercialized on the Wouri river coast in Cameroon. Rivista Italiana Delle Sostanze Grasse, 91, 129–138.
Vieira, G. H. F., Vieira, R. H. S. F., Macrae, A., & Sousa, O. V. (2005). Peptone preparation from fishing by-products. Journal of the Science of Food and Agriculture, 85(7), 1235–1237. https://doi.org/10.1002/jsfa.2161
Wang, X., Yu, H., Xing, R., Chen, X., Liu, S., & Li, P. (2018). Optimization of antioxidative peptides from mackerel (Pneumatophorus japonicus) viscera. PeerJ, 2018(2). https://doi.org/10.7717/peerj.4373/supp-1
Zhao, J., & Shimizu, K. (2003). Metabolic flux analysis of Escherichia coli K12 grown on 13C-labeled acetate and glucose using GC-MS and powerful flux calculation method. Journal of Biotechnology, 101(2), 101–117. https://doi.org/10.1016/S0168-1656(02)00316-4
Zhao, L., Budge, S. E., Ghaly, A. S., & Brooks, M. (2011). Extraction, purification and characterization of fish pepsin: A critical review. Journal of Food Processing & Technology, 02(06). https://doi.org/10.4172/2157-7110.1000126

Authors

Tati Nurhayati
nurhayati7870@gmail.com (Primary Contact)
Raden Hilman Wirayudha
Pipih Suptijah
NurhayatiT., WirayudhaR. H., & SuptijahP. (2023). Karakteristik pepton dari limbah jeroan ikan sidat (Anguilla bicolor) sebagai nutrien untuk pertumbuhan bakteri: Peptone characteristics from eel (Anguilla bicolor) viscera as a nutrient for bacterial growth . Jurnal Pengolahan Hasil Perikanan Indonesia, 26(1), 1-12. https://doi.org/10.17844/jphpi.v26i1.43326

Article Details