Risiko Paparan Formaldehida dari Beberapa Jenis Ikan pada Masyarakat di Kecamatan Dramaga, Bogor, Jawa Barat

  • Alfin Maulana Wihardi Program Studi Magister Ilmu Pangan, Sekolah Pascasarjana, IPB University, Bogor
  • Puspo Edi Giriwono Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor
  • Dias Indrasti Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor
Keywords: consumption, exposure, fish, formaldehdye, risk

Abstract

Residual formaldehyde compounds may be found in fish either naturally or intentionally added. Exposure of formaldehyde from food can cause damage to the gastrointestinal tract, liver, kidney, and is carcinogenic in humans. This study aims to estimate the risk value of formaldehyde exposure level due to fish consumption in the community population in Dramaga Subdistrict with deterministic approach. Fish consumption data was obtained from a consumption survey using a semi food frequency questionnaire (FFQ). The fish consumption survey was conducted on 505 respondents with an age range of 5-60 years and over. Formaldehyde analysis was conducted on four types of fish that are popular and often consumed by the community, namely salted peda fish, salted anchovy rice fish, salted japuh fish, and fresh anchovy fish. The results showed that formaldehyde levels in four types of fish range from 8.30 – 105.09 mg/kg. The average daily consumption of salted peda, salted anchovy rice, salted japuh, and fresh anchovy was 11.58±8.32; 8.85±4.93; 7.72±4.51; and 9.85±6.45 (g/day). The average daily exposure values of formaldehyde in salted peda, salted anchovy rice, salted japuh, and fresh anchovy were 0.0025; 0.0088; 0.0146; and 0.0014 (mg/kg bw/day). The overall of daily exposure value is still below the maximum oral exposure limit of 0.2 (mg/kg bb/day). The value of exposure risk with hazard quotient (HQ) in four types of fish is 0.007–0.073. The HQ was found to be below 1, indicating risk level of exposure to formaldehyde in the community in Dramaga Subdistrict  is still within safe limits.

Downloads

Download data is not yet available.

References

Adriani A, Karim A, Dali S. 2019. Analysis of formaldehyde preservatives in wet anchovy (Stolephorus sp.) from traditional markets in Makassar City, South Sulawesi. J Akta Kim Indones−Indonesia Chimica Acta 11(1): 1−10. DOI: 10.20956/ica.v11i1.6399.

Afiyah NN, Solihin I, Lubis E. 2019. Pengaruh rantai distribusi dan kualitas ikan tongkol (Euthynnus sp.) dari PPP Blanakan selama pendistribusian ke daerah konsumen. J Soses KP 14(2): 225−237.

Aminah SA, Zailina H, Fatimah AB. 2013. Health risk assessment of adults consuming commercial fish contaminated with formaldehyde. Food Public Health 3(1): 52−58.

Asyfiradayati R, Ningtyas A, Lizansari M, Purwati Y, Winarsih. 2018. Identifikasi kandungan formalin pada bahan pangan (mie basah, bandeng segar dan presto, ikan asin, tahu) di Pasar Gede Kota Surakarta. J Kesehatan 11(2): 12−18. DOI: 10.23917/jk.v11i2.7666.

[BPS] Badan Pusat Statistik Kabupaten Bogor. 2022. Kecamatan Dramaga dalam Angka 2022. BPS, Kabupaten Bogor.

Benjakul S, Visessanguan W, Tanaka M. 2004. Induced formation of dimethylamine and formaldehyde by lizardfish (Saurida micropectoralis) kidney trimethylamine-N-oxide demethylase. Food Chem 84(2): 297−305. DOI: 10.1016/S03088146(03)00214-0.

Bhowmik S, Begum M, Alam AKMN. 2020. Formaldehyde-associated risk assessment of fish sold in local markets of Bangladesh. Agric Res 9: 102−108. DOI: 10.1007/s40003-019-00414-w.

[BPOM] Badan Pengawas Obat dan Makanan RI. 2019. Formaldehida dalam Pangan Olahan yang Terbentuk Karena Proses. BPOM RI, Jakarta.

Cochran WG. 1991. Teknik penarikan sampel, Terjemahan: Rudiansyah (Edisi III). 1−488. UI Press, Jakarta. ISBN: 9794560790.

[EFSA] European Food Safety Authority. 2014. Endo-genous formaldehyde turnover in humans compared with exogenous contribution from food sources. EFSA J 12(2): 3350. DOI: 10.2903/j.efsa.2014.3550.

Goumenou M, Tsatsakis A. 2019. Proposing new approaches for the risk characterisation of single chemicals and chemical mixtures: The source related Hazard Quotient (HQS) and Hazard Index (HIS) and the adversity specific Hazard Index (HIA). Toxicol Rep 6: 632−636. DOI: 10.1016/j.toxrep.2019.06.010.

Hardjomidjojo H, Nadya C. 2020. Evaluation of salted fish supply chain policy at pasar Lawang Seketeng Bogor. IOP Conf Ser: Earth Environ Sci 472: 012062. DOI: 10.1088/1755-1315/472/1/012062.

Harmouche-Karaki M, Mahfouz M, Obeyd J, Salameh P, Mahfouz Y, Helou K. 2020. Development and validation of a quantitative food frequency questionnaire to assess deitary intake among Lebanese adults. Nutr J 19: 65. DOI: 10.1186/s12937-020-00581-5.

Hastuti S. 2010. Analisis kualitatif dan kuantitatif formaldehid pada ikan asin di Madura. Agrointek 4(2): 132−137.

Hoque MS, Jacxsens L, Rahman MB, Nowsad AAKM, Azad SMO, De Meulenaer B, Lachat C, Rahman M. 2018. Evaluation of artificially contaminated fish with formaldehyde under laboratory conditions and exposure assessment in fresh-water fish in Southern Bangladesh. Chemosphere 195: 702−712. DOI: 10.1016/j.chemosphere.2017.12.111.

Jawahar LS, John C, Shafeekh M, Anupama TK, Sankar TV. 2017. Retention of residual formaldehyde in treated Indian mackerel (Rastrelliger kanagurta) under iced storage and related food safety concern. Indian J Fish 64(4): 87–93. DOI: 10.21077/ijf.2017.64.4.61228-12.

[KKP] Kementerian Kelautan dan Perikanan. 2021. Data Konsumsi Ikan Nasional [Internet]. https://statistik.kkp.go.id/home.php?m=aki&i=209#panel-footer.

[Kemenkes] Kementerian Kesehatan Republik Indonesia. 2012. Peraturan Menteri Kesehatan Republik Indonesia Nomor 033 Tentang Bahan Tambahan Pangan. Kemenkes RI, Jakarta.

[Kemenkes] Kementerian Kesehatan Republik Indonesia. 2021. Keputusan Menteri Kesehatan Republik Indo-nesia Nomor Hk.01.07/Menkes/4642/2021 Tentang Penyelenggaraan Laboratorium Pemeriksaan Coronavirus Disease 2019 (Covid-19). Kemenkes RI, Jakarta.

Kundu A, Dey P, Bera R, Sarkar R, Kim B, Kacew S, Lee BM, Karmakar S, Kim HS. 2020. Adverse health risk from prolonged consumption of formaldehyde-pre-served carps in eastern region of Indian population. Environ Sci Pollut Res 27: 16415–16425. DOI: 10.1007/s11356-020-07993-0.

Lee J, Fong Q, Park JW. 2016. Effect of pre-freezing treatments on the quality of Alaska pollock fillets subjected to freezing/thawing. Food Biosci 16: 50−55. DOI: 10.1016/j.fbio.2016.09.003.

Lee J, Park JW. 2016. Pacific whiting frozen fillets as affected by postharvest processing and storage conditions. Food Chem 201: 177−184. DOI: 10.10 16/j.foodchem.2016.01.083.

Liu J, Chan KKJ, Chan W. 2016. Identification of protein thiazolidination as a novel molecular signature for oxidative stress and formaldehyde exposure. Chem Res Toxicol 29(11): 1865–1871. DOI: 10.1021/acs.chemrestox.6b00271.

Ma W, Hu Y, Wang H, Zhao D. 2018. The effects of typical salts, acids and ionic liquids on the solubility of formaldehyde in aqueous solutions. Fluid Phase Equilib 460: 51–56. DOI: 10.1016/j.fluid.2017.12.019.

Nash T. 1953. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55(3): 416–421. DOI: 10.1042/bj0550416.

Nowshad F, Islam MN, Khan MS. 2018. Concentration and formation behavior of naturally occurring formaldehyde in foods. Agric Food Secur 7: 17. DOI: 10.1186/s40066-018-0166-4.

Nurhayati T, Abdullah A, Sari SN. 2019. Penentuan formaldehid ikan beloso (Saurida tumbil) selama penyimpanan beku. JPHPI–J Pengolahan Hasil Perikanan Indones 22(2): 236–245. DOI: 10.17844/ jphpi.v22i2.27669.

Oujifard A, Benjakul S, Nirmal NP, Bashirzadeh S. 2021. Chemical, nutritional, microbial, and sensory characteristic of fish sauce suragh from Hormozgan, Iran. J Aquat Food Prod Technol 30(2): 140–150. DOI: 10.1080/10498850.2020.1866727.

Pertiwi DRC, Wittiarika ID, Atika A, Anis W. 2021. Factors related to nutritional status in pre-school children. Indones Midwifery Health Sci J 4(4): 332–343. DOI: 10.20473/imhsj.v4i4.2020.332-343.

Putri AK, Anissah U, Ariyani F, Wibowo S. 2018. Probabilistic health risk assesment due to natural formaldehyde intake through opah fish (Lampris guttatus) consumption in Indonesia. Squalen Bull Mar Fish Postharvest Biotech 13(2): 69−78. DOI: 10.15578/squalen.v13i2.354.

Rahayu SM, Suseno SH, Ibrahim B. 2014. Proximate, latty acid profile and heavy metal content of selected by-catch fish species from Muara Angke, Indonesia. Pakistan J Nutr 13(8): 480–485. DOI: 10.3923/pjn.2014.480.485.

Rolls BJ. 2014. What is the role of portion control in weight management. Int J Obes 38: S1–S8. DOI: 10.1038/ijo.2014.82.

Surahman ZM, Hanningtyas I, Aristi D, Cahyaningrum F, Laelasari E. 2019. Factors related to the presence of formaldehyde in the salted fish trade in Ciputat, Indonesia. Mal J Med Health Sci 15(3): 89–94.

[US EPA] United States Environmental Protection Agency. 2014. Formaldehyde CASRN 50-00-0|DTXSID7020637. https://cfpub.epa.gov/ncea/iris2/chemicallanding.cfm?substance_nmbr=419.

Wulandari RA, Madanijah S. 2015. Gaya hidup, kon-sumsi pangan, dan hubungannya dengan tekanan darah pada lansia anggota posbindu. J Gizi Pangan 10(2): 125–132.

Yulianti CH. 2021. Perbandingan uji deteksi formalin pada makanan menggunakan pereaksi antilin dan rapid tes kit formalin (Labstest). J Pharm Sci 6(1): 53−58. DOI: 10.53342/pharmasci.v6i1.205.

Published
2023-10-09
How to Cite
WihardiA. M., GiriwonoP. E., & IndrastiD. (2023). Risiko Paparan Formaldehida dari Beberapa Jenis Ikan pada Masyarakat di Kecamatan Dramaga, Bogor, Jawa Barat. Jurnal Mutu Pangan : Indonesian Journal of Food Quality, 10(2), 108-115. https://doi.org/10.29244/jmpi.2023.10.2.108
Section
Research Paper