A Changing Landscape: Exploring the Relationship between Clean and Clear Status Policy, Coal Mining, and Deforestation
Abstract
Coal plays a crucial role in energy generation in developing nations and serves as a vital source of power amidst growing energy demands. However, coal mining often acts as a primary driver of deforestation and poses significant environmental challenges. Indonesia, a country with extensive forest areas and a significant coal producer, has implemented a Clean and Clear status policy to address regional and administrative issues related to mining permits. This study aims to assess the impact of this government permit for coal mining in forest areas using the fixed effect panel data method, offering insights into the relationship between coal mining activities and deforestation trends. The analysis focused on the period from 2010 to 2019 and covered 110 regencies in Indonesia, providing a comprehensive understanding of the spatial and temporal dynamics of forest loss. The estimation findings indicated a negative correlation between the areas allocated for coal mining concession permits and forest areas, underscoring the need for stringent regulations and effective land management practices. Therefore, it is recommended that the Clean and Clear status policy not only be applicable during the permit granting phase, but also prioritize post-mining periods to ensure the completion of land reclamation activities.
References
Abman, R., & Carney, C. (2020b). Land rights, agricultural productivity, and deforestation. Food Policy, 94, 101841. https://doi.org/10.1016/j.foodpol.2020.101841
Adiatma, J. C., Arinaldo, D., & Tampubolong, A. P. (2018). Coal dynamics and energy transition in Indonesia: The future of coal in Indonesia study. Jakarta: Institute for Essential Services Reform (IESR).
Akram, R., Chen, F., Khalid, F., Huang, G., & Irfan, M. (2021). Heterogeneous effects of energy efficiency and renewable energy on economic growth of BRICS countries: A fixed effect panel quantile regression analysis. Energy, 215, 119019. https://doi.org/10.1016/j.energy.2020.119019
Banerjee, S., Misra, A., Sar, A., Pal, S., Chaudhury, S., & Dam, B. (2020). Poor nutrient availability in opencast coalmine influences microbial community composition and diversity in exposed and underground soil profiles. Applied Soil Ecology, 152, 103544. https://doi.org/10.1016/j.apsoil.2020.103544
Bauknecht, D., Andersen, A. D., & Dunne, K. T. (2020). Challenges for electricity network governance in whole system change: Insights from energy transition in Norway. Environmental Innovation and Societal Transitions, 37, 318–331. https://doi.org/10.1016/j.eist.2020.09.004
Bjornlund, L. (2010). Deforestation. ReferencePoint Press, Inc.
Bohn, H., & Deacon, R. T. (1997). Ownership risk, investment, and the use of natural resources. The American Economic Review, 90(3),526–549.
[BP] British Petroleum. (2020). Statistical review of world energy 2020. Retrieved from https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf
Castro-Nunez, A., Charry, A., Castro-Llanos, F., Sylvester, J., & Bax, V. (2020). Reducing deforestation through value chain interventions in countries emerging from conflict: The case of the Colombian cocoa sector. Applied Geography, 123, 102280. https://doi.org/10.1016/j.apgeog.2020.102280
Chen, J., Nan, J., Xu, D., Mo, L., Zheng, Y., Chao, L., Qu, H., Guo, Y., Li, F., & Bao, Y. (2020). Response differences between soil fungal and bacterial communities under opencast coal mining disturbance conditions. Catena, 194, 104779. https://doi.org/10.1016/j.catena.2020.104779
Chong, H. T., & Collie, A. (2022). The Characteristics of Accepted Work-related Injuries and Diseases Claims in the Australian Coal Mining Industry. Safety and Health at Work, 13(2), 135–140. https://doi.org/10.1016/j.shaw.2021.12.701
[DEN] Dewan Energi Nasional. (2019). Indonesia energy outlook 2019. Jakarta: Dewan Energi Nasional. Retrieved from https://www.esdm.go.id/assets/media/content/content-outlook-energi-indonesia-2019-bahasa-indonesia.pdf
[ESDM] Kementerian Energi dan Sumberdaya Mineral. (2019). Statistik ketenagalistrikan tahun 2019. Jakarta: Direktorat Jenderal Ketenagalistrikan Kementerian Energi dan Sumberdaya Mineral. Retrieved from https://gatrik.esdm.go.id/assets/uploads/download_index/files/c4053-statistik-2019-highres.pdf
[ESDM] Kementerian Energi dan Sumberdaya Mineral. (2021). Laporan kinerja Kementerian ESDM. Jakarta: Kementerian Energi dan Sumberdaya Mineral. Retrieved from https://www.esdm.go.id/assets/media/content/content-laporan-kinerja-kementerian-esdm-2021.pdf
[FAO] Food and Agriculture Organization. (2020). The state of the world’s forests 2020. Forests, biodiversity and people. Rome: FAO and UNEP. Retrieved from https://doi.org/10.4060/ca8642en
Feng, S., He, W., & Li, F. (2020). Model detection and estimation for varying coefficient panel data models with fixed effects. Computational Statistics and Data Analysis, 152, 107054. https://doi.org/10.1016/j.csda.2020.107054
Franco-Solís, A., & Montanía, C. V. (2021). Dynamics of deforestation worldwide: A structural decomposition analysis of agricultural land use in South America. Land Use Policy, 109, 105619. https://doi.org/10.1016/j.landusepol.2021.105619
Fünfgeld, A. (2020). Coal vs climate - Indonesia’s energy policy contradicts its climate goals. German Institute of Global and Area Studies (GIGA). http://www.jstor.org/stable/resrep24811
Gao, Y., Wang, J., Zhang, M., & Li, S. (2021). Measurement and prediction of land use conflict in an opencast mining area. Resources Policy, 71, 101999. https://doi.org/10.1016/j.resourpol.2021.101999
Ginoga, K. L., Lugina, M., & Djaenudin, D. (2005). Kajian kebijakan pengelolaan hutan lindung. Jurnal Penelitian Sosial dan Ekonomi, 2(2), 203–231. https://doi.org/10.20886/jpsek.2005.2.2.169-194
Glina, B., Mendyk, Ł., Piernik, A., Nowak, M., Maier, A., Inselsbacher, E., & Glatzel, S. (2022). Local weather conditions determine DOC production and losses from agricultural fen soils affected by open-pit lignite mining. Catena, 211, 106012. https://doi.org/10.1016/j.catena.2021.106012
Gu, X., Wang, J., & Liu, Y. (2010). Water resistant features of high-risk outburst coal seams and standard discriminant model of mining under water-pressure. Mining Science and Technology, 20(6), 797–802. https://doi.org/10.1016/S1674-5264(09)60284-2
Guadalupe, V., Sotta, E. D., Santos, V. F., Gonçalves Aguiar, L. J., Vieira, M., de Oliveira, C. P., & Nascimento Siqueira, J. V. (2018). REDD+ implementation in a high forest low deforestation area: Constraints on monitoring forest carbon emissions. Land Use Policy, 76, 414–421. https://doi.org/10.1016/j.landusepol.2018.02.015
Gujarati, D. N., & Porter, D. C. (2009). Basic econometrics (5th ed.). McGraw-Hill.
Hofbauer, L., McDowall, W., & Pye, S. (2022). Challenges and opportunities for energy system modelling to foster multi-level governance of energy transitions. Renewable and Sustainable Energy Reviews, 161, 112330. https://doi.org/10.1016/j.rser.2022.112330
Huang, B., Lee, T. H., & Ullah, A. (2019). A combined random effect and fixed effect forecast for panel data models. Journal of Management Science and Engineering, 4(1), 28–44. https://doi.org/10.1016/j.jmse.2019.03.004
[IEA] International Energy Agency. (2018). Global energy & CO2 status report: The latest trends in energy and emissions in 2018. International Energy Agency. Retrieved from https://iea.blob.core.windows.net/assets/23f9eb39-7493-4722-aced-61433cbffe10/Global_Energy_and_CO2_Status_Report_2018.pdf
Irshaid, J., Mochizuki, J., & Schinko, T. (2021). Challenges to local innovation and implementation of low-carbon energy-transition measures: A tale of two Austrian regions. Energy Policy, 156, 112432. https://doi.org/10.1016/j.enpol.2021.112432
Ji, A. B., Zhang, J. J., He, X., & Zhang, Y. H. (2022). Fixed effects panel interval-valued data models and applications. Knowledge-Based Systems, 237, 107798. https://doi.org/10.1016/j.knosys.2021.107798
Jiang, C., Zhao, D., Chen, X., Zheng, L., Li, C., & Ren, M. (2022). Distribution, source and ecological risk assessment of polycyclic aromatic hydrocarbons in groundwater in a coal mining area, China. Ecological Indicators, 136, 108683 https://doi.org/10.1016/j.ecolind.2022.108683
Kamim, A. B. M. (2018). Perebutan ruang kehidupan dan gangguan terhadap animal rights: Studi atas konflik satwa-manusia sebagai implikasi dari ekspansi perkebunan sawit di Indonesia. BALAIRUNG: Jurnal Multidisipliner Mahasiswa Indonesia, 1(2), 199–217. https://doi.org/10.22146/balairung.v1i2.42056
Kartikasari, R., Rachmansyah, A., & Leksono, A. S. (2018). The impact of coal mining on deforestation rates in Kutai Kartanegara Regency of East Kalimantan Province. Indonesian Green Technology Journal, 7(1), 14–19. https://doi.org/10.21776/ub.igtj.2018.007.01.03
Kassouri, Y., Altıntaş, H., Alancioğlu, E., & Kacou, K. Y. T. (2021). New insights on the debt-growth nexus: A combination of the interactive fixed effects and panel threshold approach. International Economics, 168, 40–55. https://doi.org/10.1016/j.inteco.2021.08.001
Kazungu, M., Ferrer Velasco, R., Zhunusova, E., Lippe, M., Kabwe, G., Gumbo, D. J., & Günter, S. (2021). Effects of household-level attributes and agricultural land-use on deforestation patterns along a forest transition gradient in the Miombo landscapes, Zambia. Ecological Economics, 186, 107070. https://doi.org/10.1016/j.ecolecon.2021.107070
[KLHK] Kementerian Lingkungan Hidup dan Kehutanan. (2021). Laporan inventarisasi gas rumah kaca (GRK), dan monitoring, pelaporan, verifikasi (MPV). Jakarta: Kementerian Lingkungan Hidup dan Kehutanan.
Konicek, P., & Waclawik, P. (2018). Stress changes and seismicity monitoring of hard coal longwall mining in high rockburst risk areas. Tunnelling and Underground Space Technology, 81, 237–251. https://doi.org/10.1016/j.tust.2018.07.019
[KPK] Komisi Pemberantasan Korupsi. (2018). Nota sintesis - Evaluasi gerakan nasional penyelamatan sumber daya alam 2018. Jakarta: Komisi Pemberantasan Korupsi.
Kurowska, K., Kryszk, H., Marks-Bielska, R., Mika, M., & Leń, P. (2020). Conversion of agricultural and forest land to other purposes in the context of land protection: Evidence from Polish experience. Land Use Policy, 95, 104614. https://doi.org/10.1016/j.landusepol.2020.104614
Laing, T. (2019). Small man goes where the large fears to tread: Mining in Guyana: 19902018. Resources Policy, 63, 101426. https://doi.org/10.1016/j.resourpol.2019.101426
Landry, J. S., & Matthews, H. D. (2016). Non-deforestation fire vs. fossil fuel combustion: The source of CO2 emissions affects the global carbon cycle and climate responses. Biogeosciences, 13(7), 2137–2149. https://doi.org/10.5194/bg-13-2137-2016
Lee, Y., Mukherjee, D., & Ullah, A. (2019). Nonparametric estimation of the marginal effect in fixed-effect panel data models. Journal of Multivariate Analysis, 171, 53–67. https://doi.org/10.1016/j.jmva.2018.11.013
Li, G., Hu, Z., Li, P., Yuan, D., Wang, W., & Yang, K. (2021). The optimal framework and model to balance underground coal mining and cropland protection in Jining, eastern China. Resources Policy, 74, 102307. https://doi.org/10.1016/j.resourpol.2021.102307
Li, G., Hu, Z., Li, P., Yuan, D., Wang, W., Han, J., & Yang, K. (2022). Optimal layout of underground coal mining with ground development or protection: A case study of Jining, China. Resources Policy, 76, 102639. https://doi.org/10.1016/j.resourpol.2022.102639
Liu, X., Chen, S., Yan, X., Liang, T., Yang, X., El-Naggar, A., Liu, J., & Chen, H. (2021). Evaluation of potential ecological risks in potential toxic elements contaminated agricultural soils: Correlations between soil contamination and polymetallic mining activity. Journal of Environmental Management, 300, 113679. https://doi.org/10.1016/j.jenvman.2021.113679
Long, N. V. (1975). Resource extraction under the uncertainty about possible nationalization. Journal of Economic Theory, 10(1), 42–53. https://doi.org/10.1016/0022-0531(75)90060-5
López González, D. M., & Garcia Rendon, J. (2022). Opportunities and challenges of mainstreaming distributed energy resources towards the transition to more efficient and resilient energy markets. Renewable and Sustainable Energy Reviews, 157, 112018. https://doi.org/10.1016/j.rser.2021.112018
Lu, X., & White, H. (2014). Robustness checks and robustness tests in applied economics. Journal of Econometrics, 178, 194–206. https://doi.org/10.1016/j.jeconom.2013.08.016
Ma, Q., Wu, J., He, C., & Fang, X. (2021). The speed, scale, and environmental and economic impacts of surface coal mining in the Mongolian Plateau. Resources, Conservation and Recycling, 173, 105730. https://doi.org/10.1016/j.resconrec.2021.105730
Mueller, R. M. (2022). Surface coal mining and public health disparities: Evidence from Appalachia. Resources Policy, 76, 102567. https://doi.org/10.1016/j.resourpol.2022.102567
Mullan, K., Caviglia-Harris, J. L., & Sills, E. O. (2021). Sustainability of agricultural production following deforestation in the tropics: Evidence on the value of newly-deforested, long-deforested and forested land in the Brazilian Amazon. Land Use Policy, 108, 105660. https://doi.org/10.1016/j.landusepol.2021.105660
Müller-Hansen, F., Heitzig, J., Donges, J. F., Cardoso, M. F., Dalla-Nora, E. L., Andrade, P., Kurths, J., & Thonicke, K. (2019). Can intensification of cattle ranching reduce deforestation in the Amazon? Insights from an agent-based social-ecological model. Ecological Economics, 159, 198–211. https://doi.org/10.1016/j.ecolecon.2018.12.025
Nazir, N., & Ahmad, S. (2018). Forest land conversion dynamics: A case of Pakistan. Environment, Development, and Sustainability, 20, 389–405. https://doi.org/10.1007/s10668-016-9887-3
Ngoma, H., Pelletier, J., Mulenga, B. P., & Subakanya, M. (2021). Climate-smart agriculture, cropland expansion and deforestation in Zambia: Linkages, processes and drivers. Land Use Policy, 107, 105482. https://doi.org/10.1016/j.landusepol.2021.105482
Norberg, J. (1999). Linking nature’s services to ecosystems: Some general ecological concepts. Ecological Economics, 29(2), 183202. https://doi.org/10.1016/S0921-8009(99)00011-7
Peng, B., Yu, J., & Zhu, Y. (2021). A heteroskedasticity robust test for cross-sectional correlation in a fixed effects panel data model. Economics Letters, 201, 109799. https://doi.org/10.1016/j.econlet.2021.109799
[PLN] Perusahaan Listrik Negara. (2020). Statistik PLN 2019. Jakarta: Perusahaan Listrik Negara. Retrieved from https://web.pln.co.id/statics/uploads/2020/08/Statistik-2019-4-8-20-rev.pdf
Rahman, M. F., & Islam, K. (2021). Effectiveness of protected areas in reducing deforestation and forest fragmentation in Bangladesh. Journal of Environmental Management, 280, 111711. https://doi.org/10.1016/j.jenvman.2020.111711
Rodríguez-de-Francisco, J. C., del Cairo, C., Ortiz-Gallego, D., Velez-Triana, J. S., Vergara-Gutiérrez, T., & Hein, J. (2021). Post-conflict transition and REDD+ in Colombia: Challenges to reducing deforestation in the Amazon. Forest Policy and Economics, 127, 102450. https://doi.org/10.1016/j.forpol.2021.102450
Saputra, B., & Mahmudi. (2012). Pengaruh desentralisasi fiskal terhadap pertumbuhan ekonomi dan kesejahteraan masyarakat. Jurnal Akuntansi dan Auditing Indonesia, 16, 185–199.
Siburian, R. (2015). Antara pertanian dan pertambangan batubara: Studi perebutan lahan di Kecamatan Tenggarong Seberang. Jurnal Masyarakat & Budaya, 17, 233–248. https://doi.org/10.14203/jmb.v16i1.44
Siqueira-Gay, J., Sonter, L. J., & Sánchez, L. E. (2020). Exploring potential impacts of mining on forest loss and fragmentation within a biodiverse region of Brazil’s northeastern Amazon. Resources Policy, 67, 101662. https://doi.org/10.1016/j.resourpol.2020.101662
Solechah, S. N. (2012). Realisasi desentralisasi sektor pertambangan. Jurnal Info Singkat Pemerintahan Dalam Negeri, 4, 17–20.
Stringer, T., & Joanis, M. (2022). Assessing energy transition costs: Sub-national challenges in Canada. Energy Policy, 164, 112879. https://doi.org/10.1016/j.enpol.2022.112879
Sunderlin, W. D., & Resosudarmo, I. A. P. (1997). Laju dan penyebab deforestasi di Indonesia: Penelaahan kerancuan dan penyelesaiannya (Occasional Paper No. 9). Bogor: CIFOR.
Supriatna, J., Shekelle, M., Fuad, H. A. H., Winarni, N. L., Dwiyahreni, A. A., Farid, M., Mariati, S., Margules, C., Prakoso, B., & Zakaria, Z. (2020). Deforestation on the Indonesian island of Sulawesi and the loss of primate habitat. Global Ecology and Conservation, 24, e01205. https://doi.org/10.1016/j.gecco.2020.e01205
Syafi’i, I. (2016). Konflik agraria di Indonesia: Catatan reflektif konflik perkebunan Sawit di Kalimantan Timur. Jurnal Masyarakat & Budaya, 18, 415–432. https://doi.org/10.14203/jmb.v18i3.572
Trigg, A. B., & Richard Dubourg, W. (1993). Valuing the environmental impacts of opencast coal mining in the UK: The case of the Trent Valley in North Staffordshire. Energy Policy, 21(11), 1110–1122. https://doi.org/10.1016/0301-4215(93)90261-D
Villén-Pérez, S., Anaya-Valenzuela, L., Conrado da Cruz, D., & Fearnside, P. M. (2022). Mining threatens isolated indigenous peoples in the Brazilian Amazon. Global Environmental Change, 72, 102398. https://doi.org/10.1016/j.gloenvcha.2021.102398
Vuola, M. (2022). The intersections of mining and neoliberal conservation. World Development, 152, 105816. https://doi.org/10.1016/j.worlddev.2022.105816
Wahyuni, H., & Suranto, S. (2021). Dampak deforestasi hutan skala besar terhadap pemanasan global di Indonesia. JIIP: Jurnal Ilmiah Ilmu Pemerintahan, 6(1), 148–162. https://doi.org/10.14710/jiip.v6i1.10083
Wang, Y. Q., Wang, Z. F., & Cheng, W. C. (2019). A review on land subsidence caused by groundwater withdrawal in Xi’an, China. Bulletin of Engineering Geology and the Environment, 78(4), 2851–2863. https://doi.org/10.1007/s10064-018-1278-6
Yang, D., Qiu, H., Ma, S., Liu, Z., Du, C., Zhu, Y., & Cao, M. (2022). Slow surface subsidence and its impact on shallow loess landslides in a coal mining area. Catena, 209, 105830. https://doi.org/10.1016/j.catena.2021.105830
Zaman, K. (2022). Environmental cost of deforestation in Brazil’s Amazon rainforest: Controlling biocapacity deficit and renewable wastes for conserving forest resources. Forest Ecology and Management, 504, 119854. https://doi.org/10.1016/j.foreco.2021.119854
Zhang, P., Ye, Q., & Yu, Y. (2021). Research on farmers’ satisfaction with ecological restoration performance in coal mining areas based on fuzzy comprehensive evaluation. Global Ecology and Conservation, 32, e01934. https://doi.org/10.1016/j.gecco.2021.e01934
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Manajemen Hutan Tropika is an open access journal which means that all contents is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the Budapest Open Access Initiative (BOAI) definition of open access.