Wood Vinegar as Plant Growth and Defense Inducer of Banana Plants against Ralstonia syzygii subsp. celebesensis

  • Muhammad Evan Nurrahmawan IPB University
  • Giyanto Department of Plant Protection, IPB University
  • Abdjad Asih Nawangsih Department of Plant Protection, IPB University
  • Erina Sulistiani Southeast Asian Regional Centre for Tropical Biology
Keywords: banana blood disease, peroxidase, polyphenol oxidase, priming, pyroligneous acid


Wood Vinegar as Plant Growth and Defense Inducer of Banana Plants against Ralstonia syzygii subsp. celebesensis

Banana seedlings derived from tissue culture are known to be susceptible to stress at early growing stage in the field. Pre-conditioning of seedlings using priming agents, such as coconut shell wood vinegar was reported to enhance plant growth and resistance. This study aimed to obtain information on the effect of coconut shell wood vinegar on growth and defense-related enzymes activity of Cavendish banana plantlet in the root induction phase and suppression of R. syzygii subsp. celebesensis in vitro. Research was conducted involving evaluation of wood vinegar phytotoxicity, analysis of plantlet growth, analysis of peroxidase and polyphenol oxidase activities, isolation of R. syzygii subsp. celebsensis, and toxicity assay of wood vinegar against R. syzygii subsp. celebesensis in vitro. Application of wood vinegar at 1.5% concentraion was phytotoxic, indicated by symptom development including chlorosis, necrosis, mucus secretion and plantlet death. Lower concentration of wood vinegar, i.e. ≤ 1.0% was not phytotoxic; even the treatment of wood vinegar at 0.1% caused an optimum increase in plantlet growth. Application of wood vinegar also increased the activity of defense-related enzymes at 2, 4, and 6 days after planting (DAP) but decreased at 30 DAP. Furthermore, wood vinegar showed antibacterial properties through the formation of inhibition zones and it caused decreased in the value of R. syzygii subsp. celebesensis cell densities. This study shows the potential of priming techniques for controlling banana blood disease, especially for banana seedlings propagated through tissue culture.


Download data is not yet available.


Abidin A. 2018. Bakteri endofit penghasil AHL-laktonase asal tanaman pisang untuk pengendalian penyakit darah [tesis]. Bogor (ID): Institut Pertanian Bogor.

Ahadiyat YR, Rostaman R, Fauzi A. 2020. Pengaruh aplikasi asap cair tempurung kelapa dan pupuk NPK terhadap hama dan penyakit pada padi Gogo. J Penelit Pertan Tanam Pangan. 4(3):153–160. DOI: https://doi.org/10.21082/jpptp.v4n3.2020.p153-160.

Ahmed OB, Dablool AS. 2017. Quality improvement of the DNA extracted by boiling method in Gram negative bacteria. Int. J. Bioassays 6(4):5349. DOI: https://doi.org/10.21746/ijbio.2017.04.004.

Aisyah I, Giyanto, Sinaga MS, Nawangsih AA, Pari G. 2018a. Uji in vitro asap cair terhadap Ralstonia syzygii subsp. celebesensis penyebab penyakit darah pada pisang. J Fitopatol Indones. 14(4):145–151. DOI: https://doi.org/10.14692/jfi.14.4.145.

Aisyah I, Sinaga MS, Nawangsih AA, Giyanto, Pari G. 2018b. Utilization of liquid smoke to suppress blood diseases on bananas and its effects on the plant growth. Agrivita J Agric Sci. 40(3):453–460. DOI: https://doi.org/10.17503/agrivita.v40i3.1390.

Baccelli I, Mauch-Mani B. 2016. Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones. Plant Mol. Biol. 91(6):703–711. DOI: https://doi.org/10.1007/S11103-015-0406-Y.

Bednarek PT, Orłowska R. 2019. Plant tissue culture environment as a switch-key of (epi)genetic changes. Plant Cell Tissue Organ Cult. 140(2):245–257. DOI: https://doi.org/10.1007/S11240-019-01724-1.

Cahyaniati C, Mortensen N, Marthur S. 1997. Bacterial Wilt of Banana in Indonesia. Jakarta (ID): Departemen Pertanian Indonesia.

Cappuccino JG, Sherman N. 2014. Microbiology: A Laboratory Manual. Ed ke-10. New York (USA): Pearson Education, Inc.

Chen YH, Li YF, Wei H, Li XX, Zheng HT, Dong XY, Xu TF, Meng JF. 2020. Inhibition efficiency of wood vinegar on grey mould of table grapes. Food Biosci. 38:1–8. DOI: https://doi.org/10.1016/j.fbio.2020.100755.

Cheng J, Hu SC, Kang K, Li XM, Geng ZC, Zhu MQ. 2021. The effects of pyrolysis temperature and storage time on the compositions and properties of the pyroligneous acids generated from cotton stalk based on a polygeneration process. Ind Crops Prod. 161:1–11. DOI: https://doi.org/10.1016/j.indcrop.2020.113226.

Cho YK, Ahn HK. 1999. Purification and characterization of polyphenol oxidase from potato: I. purification and properties. J Food Biochem. 23(6):577–592. DOI: https://doi.org/10.1111/j.1745-4514.1999.tb00587.x.

Conrath U. 2009. Priming of induced plant defense responses. Adv Bot Res. 513:61–395. DOI: https://doi.org/10.1016/S0065-2296(09)51009-9.

de Souza Silva SI, Pimenta AS, de Oliveira Miranda N, Lourenço YBC, de Souza EC. 2020. Wood vinegar inhibits emergence and initial growth of Leucaena (Leucaena leucocephala /Lam./ de Wit) seedlings. Agric Conspec Sci. 85(2):153–158.

de Tunes LM, Avelar SAG, Barros ACSA, Pedroso DC, Muniz MFB, de Menezes NL. 2012. Critical levels of organic acids on seed germination and seedling growth of wheat. Rev Bras Sementes. 34(3):366–372. DOI: https://doi.org/10.1590/S0101-31222012000300002.

Drenth A, Ray J, Subandiyah S. 2020. Reversing The Impact of Banana Blood Disease in Indonesia. Brisbane (AU): APBSF Project Final Report PBSF016.

Gulzar A, Siddiqui M, Bi S. 2016. Phenolic acid allelochemicals induced morphological, ultrastructural, and cytological modification on Cassia sophera L. and Allium cepa L. Protoplasma. 253:1211–1221. DOI: https://doi.org/10.1007/s00709-015-0862-x.

Hadiwiyono. 2011. Blood bacterial wilt disease of banana: the distribution of pathogen in infected plant, symptoms, and potentiality of diseased tissues as source of infective inoculums. Nusant Biosci. 3(3):112–117. DOI: https://doi.org/10.13057/nusbiosci/n030307.

Hermanto C, Eliza E, Emilda D. 2013. Bunch management of banana to control blood disease. Australas Plant Pathol. 42(6):653–658. DOI: https://doi.org/10.1007/s13313-013-0248-5.

Hilker M, Schwachtje J, Baier M, Balazadeh S, Bäurle I, Geiselhardt S, Hincha DK, Kunze R, Mueller-Roeber B, Rillig MC, et al.. 2016. Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews. 91(4):1118–1133. DOI: https://doi.org/10.1111/brv.12215.

Jeyanthi V, Velusamy P, Kumar GV, Kiruba K. 2021. Effect of naturally isolated hydroquinone in disturbing the cell membrane integrity of Pseudomonas aeruginosa MTCC 741 dan Staphylococcus auerus MTCC 740. Heliyon. 7(5):1–7. DOI: https://doi.org/10.1016/j.heliyon.2021.e07021.

Kamran M, Khan AL, Ali L, Hussain J, Waqas M, Al-Harrasi A, Imran QM, Kim YH, Kang SM, Yun BW, et al.. 2017. Hydroquinone: A novel bioactive compound from plant-derived smoke can cue seed germination of lettuce. Front Chem. 5:30. DOI: https://doi.org/10.3389/fchem.2017.00030.

Lashari MS, Liu Y, Li L, Pan W, Fu J, Pan G, Zheng J, Zheng J, Zhang X, Yu X. 2013. Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Res. 144:113–118. DOI: https://doi.org/10.1016/j.fcr.2012.11.015.

Latif S, Chiapusio G, Weston L. 2017. Allelopathy and the role of allelochemicals in plant defence. Adv Bot Res. 82:19–54. DOI: https://doi.org/10.1016/bs.abr.2016.12.001.

Lu X, Jiang J, He J, Sun K, Sun Y. 2019. Effect of pyrolysis temperature on the characteristics of wood vinegar derived from Chinese fir waste: A comprehensive study on its growth regulation performance and mechanism. ACS Omega. 4(21):19054–19062. DOI: https://doi.org/10.1021/acsomega.9b02240.

Luna E, Bruce TJA, Roberts MR, Flors V, Ton J. 2012. Next-generation systemic acquired resistance. Plant Physiol. 158(2):844–853. DOI: https://doi.org/10.1104/pp.111.187468.

Luo X, Wang Z, Meki K, Wang X, Liu B, Zheng H, You X, Li F. 2019. Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. J Soils Sediments. 19(12):3934–3944. DOI: https://doi.org/10.1007/s11368-019-02365-9.

Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CMJ, Pozo MJ, Ton J, van Dam NM, Conrath U. 2016. Recognizing plant defense priming. Trends Plant Sci. 21(10):818–822. DOI: https://doi.org/10.1016/j.tplants.2016.07.009.

Marwan H, Rainiyati R, Mulyati S. 2020. Pengaruh aplikasi bakteri endofit terhadap perkembangan penyakit darah (Ralstonia solanacearum Phylotipe IV) pada tanaman pisang. J Budid Pertan. 16(1):95–101. DOI: https://doi.org/10.30598/jbdp.2020.16.1.95.

Mungkunkamchao T, Kesmala T, Pimratch S, Toomsan B, Jothityangkoon D. 2013. Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield of tomato (Solanum lycopersicum L.). Sci Hortic. 154:66–72. DOI: https://doi.org/10.1016/j.scienta.2013.02.020.

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 15(3):473–497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.

Pastor V, Balmer A, Gamir J, Flors V, Mauch-Mani B. 2014. Preparing to fight back: generation and storage of priming compounds. Front. Plant Sci. 5(295):1–13. DOI: https://doi.org/10.3389/FPLS.2014.00295.

Pernin A, Guillier L, Dubois-Brissonnet F. 2019. Inhibitory activity of phenolic acids against Listeria monocytogenes: deciphering the mechanisms of action using three different models. Food Microbiol. 80:18–24. DOI: https://doi.org/10.1016/j.fm.2018.12.010.

Safni I, Cleenwerck I, De Vos P, Fegan M, Sly L, Kappler U. 2014. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int J Syst Evol Microbiol. 64(9):3087–3103. DOI: https://doi.org/10.1099/ijs.0.066712-0.

Safni I, Subandiyah S, Fegan M. 2018. Ecology, epidemiology and disease management of Ralstonia syzygii in Indonesia. Front Microbiol. 9:419. DOI: https://doi.org/10.3389/fmicb.2018.00419.

Sahetapy B, Maryana N, Manuwoto Sjafrida, Mutaqin KH. 2015. Peranan beberapa jenis serangga sebagai vektor penyakit darah pada tanaman pisang [disertasi]. Bogor (ID): Institut Pertanian Bogor.

Sharma T, Dreyer I, Kochian L, Piñeros MA. 2016. The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front Plant Sci. 7:1488. DOI: https://doi.org/10.3389/fpls.2016.01488.

Sriamornsak P, Limmatvapirat S, Piriyaprasart S. 2014. Effect of Azadirachta indica A. Juss var indica, Nicotiana tabacum L., and Derris elliptica (Roxb.) on growth of duckweed. Adv Mat Res. 1060:211-214. DOI: https://doi.org/10.4028/www.scientific.net/AMR.1060.211.

Sulistiani E, Yani SA. 2012. Produksi Plantlet Tanaman dengan Menggunakan Teknik Kultur Jaringan. Bogor (ID): SEAMEO BIOTROP.

Supriadi. 2005. Present status of blood disease in Indonesia. Di dalam: Allen C, Prior P, Hayward A, editor. Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex. Minnesota (US): APS Press. hlm 394–404.

Synowiec A, Żyła K, Gniewosz M, Klieliszek M. 2021. An effect of positional isomerism of benzoic acid derivatives on antibacterial activity against Escherichia coli. Open Life Sci. 16:594–601. DOI: https://doi.org/10.1515/biol-2021-0060.

van Hulten M, Pelser M, Van Loon LC, Pieterse CMJ, Ton J. 2006. Costs and benefits of priming for defense in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 103(14):5602–5607. DOI: https://doi.org/10.1073/pnas.0510213103.

Valletta A, De Angelis G, Badiali C, Brasili E, Miccheli A, Di Cocco ME, Pasqua G. 2016. Acetic acid acts as an elicitor exerting a chitosan-like effect on xanthone biosynthesis in Hypericum perforatum L. root cultures. Plant Cell Rep. 35(5):1009–1020. DOI: https://doi.org/10.1007/s00299-016-1934-x.

Wang Y, Qiu L, Song Q, Wang S, Wang Y, Ge Y. 2019. Root proteomics reveals the effects ofwood vinegar on wheat growth and subsequent tolerance to drought stress. Int J Mol Sci. 20(4):1–23. DOI: https://doi.org/10.3390/ijms20040943.

Zheng X, van Huystee RB. 1992. Peroxidase-regulated elongation of segments from peanut hypocotyls. Plant Sci. 81(1):47–56. DOI: https://doi.org/10.1016/0168-9452(92)90023-F.

How to Cite
NurrahmawanM. E., Giyanto, NawangsihA. A., & SulistianiE. (2022). Wood Vinegar as Plant Growth and Defense Inducer of Banana Plants against Ralstonia syzygii subsp. celebesensis. Jurnal Fitopatologi Indonesia, 17(5), 183-194. https://doi.org/10.14692/jfi.17.5.183-194