Korelasi Sidik Jari Teh Putih (Camellia sinensis) dan Aktivitas Antioksidannya Menggunakan Spektrofotometri Inframerah Transformasi Fourier (FTIR) dan Analisis Data Multivariat

Authors

  • Muhammad Shalahuddin Yusuf Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor
  • Dase Hunaefi Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor
  • Nancy Dewi Yuliana Departemen Ilmu dan Teknologi Pangan, Fakultas Teknologi Pertanian, IPB University, Bogor

DOI:

https://doi.org/10.29244/jmpi.2025.12.2.130

Keywords:

DPPH, fingerprint profiling, FTIR, multivariate data analysis, tea

Abstract

White tea, made from young tea leaves dried without enzymatic fermentation, retains higher antioxidant content and has a unique sensory profile based on its growing region and processing method. Fourier transform infrared resonance (FTIR) spectrophotometry measures the absorption of infrared radiation by molecular bonds, generating a unique fingerprint. FTIR can monitor changes in the chemical composition during tea processing. Each producer may have different processing techniques that affect tea quality. A study analyzed white tea samples from five producers in Java, Indonesia, using FTIR fingerprinting and antioxidant activity. Sample D from Central Java had the highest DPPH antioxidant activity, followed by samples E (from West Java), H (from East Java), and P and G (from West Java). FTIR fingerprint analysis identified common absorption peaks at wave numbers 1242 (ester), 1600–1400 (ring double bond), 3518 cm⁻¹ (phenol), 2360 (amine), and 1400–1200 cm⁻¹ (carbonyl). Orthogonal partial least squares–discriminant analysis (OPLS-DA) grouped the samples into two classes regardless of the region: D, E, and H in class 1, and P and G in class 2. Wave numbers attributed to amine, aromatic, and aldehyde groups were among the discriminating markers for class 1 and class 2. The results of OPLS analysis revealed a strong positive correlation between wave numbers 1258, 1342, 1466, 2392, and 2685 cm⁻¹. These wave numbers were found at higher intensities in sample D, which had the highest antioxidant activity. Thus, they can be used as important markers for white tea with good antioxidant activity.

Downloads

Download data is not yet available.

References

Abudureheman B, Yu X, Fang D, Zhang H. 2022. Enzymatic oxidation of tea catechins and its mechanism. Molecules. 27 (3): 942. doi:10.3390/molecules27030942

Anitha S, Krishnan S, Senthilkumar K, Sasirekha V. 2020. Theoretical investigation on the structure and antioxidant activity of (+) catechin and (−) epicatechin – a comparative study. Mol Phys. 118 (17): e1745917. doi:10.1080/00268976.2020.1745917

Cai J xiong, Wang Y feng, Xi X gang, Li H, Wei X lin. 2015. Using FTIR spectra and pattern recognition for discrimination of tea varieties. Int J Biol Macromol. 78: 439–446. doi:10.1016/j.ijbiomac.2015.03.025

Chang R, Luo H-Y, Zhang L, Li H-H, Wang Y, Chen S-M, Zhong Y-F. 2023. Effects of different withering temperatures and times on the quality of summer white tea. J South Agric. 54 (7): 2060–2070. doi:10.11924/j.issn.1000-6850.casb2022-0065

Chaturvedula VSP, Prakash I. 2011. The aroma, taste, color and bioactive constituents of tea. J Medic Plants Res. 5 (11): 2110–2124.

Dai W, Xie D, Lu M, Li P, Lv H, Yang C, Peng Q, Zhu Y, Guo L, Zhang Y, Tan J, Lin Z. 2017. Charac-terization of white tea metabolome: Comparison against green and black tea by a nontargeted metabolomics approach. Food Res. 96: 40–45. doi:10.1016/j.foodres.2017.03.028

Damiani E, Bacchetti T, Padella L, Tiano L, Carloni P. 2014. Antioxidant activity of different white teas: Comparison of hot and cold tea infusions. J Food Comp Anal. 33 (1): 59–66. doi:10.1016/j.jfca.2013.09.010

Anjarsari IRD. 2016. Katekin teh Indonesia : prospek dan manfaatnya. J Kultivasi. 15 (2): 99–106. doi:10.24198/kltv.v15i2.11871

Direktorat Statistik Tanaman Pangan Hortikultura dan Perkebunan. 2023. Statistik Teh Indonesia 2022. Volume ke-16. Direktorat Statistik Tanaman Pangan Hortikultura dan Perkebunan, editor. Jakarta: Badan Pusat Statistik.

Durnova N, Simakova M, Isaev D, Simakova I, Simakov A. 2021. Morphology of Camellia Sinensis L. leaves as marker of white tea authenticity. Estonian Univ Life Sci. 19 (3): 1436–1445. doi:10.15159/AR.21.126

Esteki M, Memarbashi N, Simal-Gandara J. 2022. Classification and authentication of tea according to their geographical origin based on FT-IR fingerprinting using pattern recognition methods. J Food Comp Anal. 106: 104321. doi:10.1016/j.jfca.2021.104321

Esteves CSM, de Redrojo EMM, Manjón JLG, Moreno G, Antunes FE, Montalvo G, Ortega-Ojeda FE. 2022. Combining FTIR-ATR and OPLS-DA methods for magic mushrooms discrimination. Forensic Chem. 29: 100421. doi:10.1016/j.forc.2022.100421

Fan F-Y, Huang C-S, Tong Y-L, Guo H-W, Zhou S-J, Ye J-H, Gong S-Y. 2021. Widely targeted metabo-lomics analysis of white peony teas with different storage time and association with sensory attri-butes. Food Chem. 362: 130257. doi:10.1016/j.foodchem.2021.130257

Hadiansyah F. 2023. Profilling sensory teh putih (Camelia sinensis L.) berbasis panelis terlatih dan panelis konsumen [tesis]. Bogor: IPB University.

Hadiansyah F, Hunaefi D, Yuliana ND, Fuhrmann P, Smetanska I, Yasuda S. 2023. Sensory profiling of indonesian white tea using quantitative descriptive analysis. J Teknologi Industri Pangan. 34 (2): 179–186. doi:10.6066/jtip.2023.34.2.179

Hamdy SM, El-Khayat Z, Farrag AR, Sayed ON, El-Sayed MM, Massoud D. 2022. Hepatoprotective effect of Raspberry ketone and white tea against acrylamide-induced toxicity in rats. Drug Chem Toxicology. 45 (2): 722–730. doi:10.1080/01480545.2020.1772279

Hadi MHH, Ker PJ, Thiviyanathan VA, Tang SGH, Leong YS, Lee HJ, Hannan MA, Jamaludin MZ, Mahdi MA. 2021. The amber-colored liquid: a review on the color standards, methods of detection, issues and recommendations. Sensors. 21 (20): 6866. doi:10.3390/S21206866

Jin J, Li J, Gan Y, Liu J, Zhao X, Chen J, Zhang R, Zhong Y, Chen X, Wu L, Xiang X, Zhou Y, He J, Li R, Guo J, Li Z. 2020. Tea consumption is associated with decreased disease activity of rheumatoid arthritis in a real-world, large-scale study. Ann Nutr Metab. 76 (1): 54–61. doi:10.1159/000505952

Karadaş M, Demirbuğa S. 2017. Evaluation of color stability and surface roughness of bulk-fill resin composites and nanocomposites. Meandros Med Dental J. 18 (3): 199–205. doi:10.4274/meandros.36855

Khan N, Afaq F, Mukhtar H. 2008. Cancer chemo-prevention through dietary antioxidants: Progress and promise. Antioxid Redox Signal. 10 (3): 475–510. doi:10.1089/ars.2007.1740

Kim Y, Goodner KL, Park J-D, Choi J, Talcott ST. 2011. Changes in antioxidant phytochemicals and volatile composition of Camellia sinensis by oxidation during tea fermentation. Food Chem. 129 (4): 1331–1342. doi:10.1016/j.foodchem. 2011.05.012

Kondo M, Hirano Y, Kita K, Jayanegara A, Yokota HO. 2014. Fermentation characteristics, tannin contents and in vitro ruminal degradation of green tea and black tea by-products ensiled at different temperatures. Asian-Australas J Anim Sci. 27 (7): 937–945. doi:10.5713/ajas.2013.13387

Korkmaz N, Sener SO, Akkaya S, Badem M, Aliyazicioglu R, Abudayyak M, Oztas E, Ozgen U. 2019. Investigation of antioxidant, cytotoxic, tyro-sinase inhibitory activities, and phenolic profiles of green, white, and black teas. Turkish J Biochem. 44 (3): 278–288. doi:10.1515/tjb-2017-0345

Li Y, Chen C, Li Y, Ding Z, Shen J, Wang Y, Zhao L, Xu M. 2016. The identification and evaluation of two different color variations of tea. J Sci Food Agric. 96 (15): 4951–4961. doi:10.1002/jsfa.7897

De Meutter J, Goormaghtigh E. 2021. Amino acid side chain contribution to protein FTIR spectra: impact on secondary structure evaluation. Eur Biophys J. 50(3–4): 641–651. doi:10.1007/s00249-021-01507-7

Meyer BR, White HM, McCormack JD, Niemeyer ED. 2023. Catechin composition, phenolic content, and antioxidant properties of commercially-available bagged, gunpowder, and matcha green teas. Plant Food Human Nutr. 78 (4): 662–669. doi:10.1007/s11130-023-01121-2

Mu L, Li T, Tang J, Liu L, Wang R. 2021. Effects of LED Light Withering on the Quality of White Tea. IOP Conf Ser Earth Environ Sci. 792 (1): 012018. doi:10.1088/1755-1315/792/1/012018

Murtagh F, Heck A. 2012. Multivariate Data Analysis. Ilustrated. Volume ke-131. Dordrecht (NE): Springer Netherlands.

Murugesh CS, Subramanian R. 2014. Applications of enzymes in processing green tea beverages. Di dalam: Preedy V, editor. Processing and Impact on Antioxidants in Beverages. London (UK): Acade-mic Press. hlm 99–108.

Pou KRJ. 2016. Fermentation: the key step in the processing of black tea. J Bios Eng. 41 (2): 85–92. doi:10.5307/JBE.2016.41.2.085

Prasetyaningtyas K. 2024. Pandangan Iklim 2024. Badan Meteorologi Klimatologi dan Geofisika. [diakses 7 Mei 2025]. https://www.bmkg.go.id/iklim/buletin-iklim/climate-outlook-2024.

Purwaningtyas EF, Shobib A. 2022. Physicochemical characteristics of white tea product of PT. Perkebunan Nusantara IX (Kaligua Gardens) Pandansari Village, Paguyangan District, Brebes Regency. Adv Sust Sci Eng Tech. 4 (1): 0220106. doi:10.26877/asset.v4i1.11854

Rivero-Cruz J, Rodríguez de San Miguel E, Robles-Obregón S, Hernández-Espino C, Rivero-Cruz BE, Pedraza-Chaverri J, Esturau-Escofet N. 2017. Prediction of antimicrobial and antioxidant activities of mexican propolis by 1H-NMR spectros-copy and chemometrics data analysis. Molecules. 22 (7): 1184. doi:10.3390/molecules22071184

Ruan L, Wei K, Wang L, Cheng H, Wu L, Li H. 2019. Characteristics of free amino acids (the quality chemical components of tea) under spatial hetero-geneity of different nitrogen forms in tea (Camellia sinensis) plants. Molecules. 24 (3): 415–423. doi:10.3390/molecules24030415

Saputri FC, Jantan I. 2011. Effects of selected medicinal plants on human low-density lipoprotein oxidation, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radicals and human platelet aggregation. J Med Plants Res. 5 (26): 6182–6191. doi:10.5897/ JMPR11.1114

Shao C, Zhang C, Lv Z, Shen C. 2021. Pre- and post-harvest exposure to stress influence quality-related metabolites in fresh tea leaves (Camellia sinensis). Sci Hortic. 281: 109984. doi:10.1016/j.scienta. 2021.109984

Shi J, Wu W, Zhang Y, Baldermann S, Peng Q, Wang J, Xu L, Yang G, Fu J, Lv H, Lin Z. 2023. Comprehensive analysis of carotenoids consti-tuents in purple-coloured leaves and carotenoid-derived aroma differences after processing into green, black, and white tea. LWT. 173: 114286. doi:10.1016/j.lwt.2022.114286

Shimamura T, Sumikura Y, Yamazaki T, Tada A, Kashiwagi T, Ishikawa H, Matsui T, Sugimoto N, Akiyama H, Ukeda H. 2014. Applicability of the DPPH assay for evaluating the antioxidant capa-city of food additives - Inter-laboratory evaluation study. Anal Sci. 30 (7): 717–721. doi:10.2116/analsci.30.717

Silveira AC, Oliveira PF, Alves MG, Rato L, Silva BM. 2024. Daily white tea intake reprograms hepatic metabolism and improves the enzymatic antioxidant defence system of rats with prediabetes. PharmaNutrition. 28: 100393. doi:10.1016/j.phanu.2024.100393

Silverstein RM, Webster FX, Kiemle D. 2014. Spectrometric Identification of Organic Compounds. Ed ke-8. Yee J, Brennan D, editor. New Jersey (US): John Wiley & Sons, Inc.

Simatupang M, Herawati D, Yuliana ND. 2023. Fingerprinting FTIR-ATR fraksi kopi robusta dan arabika serta korelasinya terhadap aktivitas antioksidan. J Teknologi Industri Pangan. 34 (1): 70–85. doi:10.6066/jtip.2023.34.1.70

Su S, Long P, Zhang Q, Wen M, Han Z, Zhou F, Ke J, Wan X, Ho C-T, Zhang L. 2024. Chemical, sensory and biological variations of black tea under different drying temperatures. Food Chem. 446: 138827. doi:10.1016/j.foodchem.2024.1388 27

Upadhyaya H, Panda SK, Dutta BK. 2008. Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery. Acta Physiol Plant. 30 (4): 457–468. doi:10.1007/s11738-008-0143-9

Wang J-Q, Fu Y-Q, Chen J-X, Wang F, Feng Z-H, Yin J-F, Zeng L, Xu Y-Q. 2022. Effects of baking treatment on the sensory quality and physicoche-mical properties of green tea with different processing methods. Food Chem. 380: 132217. doi:10.1016/j.foodchem.2022.132217

Wang Y, Fan K, Wang J, Ding Z tang, Wang H, Bi C hong, Zhang Y wei, Sun H wei. 2017. Proteomic analysis of Camellia sinensis (L.) reveals a synergistic network in the response to drought stress and recovery. J Plant Physiol. 219: 91–99. doi:10.1016/j.jplph.2017.10.001

Wong M, Sirisena S, Ng K. 2022. Phytochemical profile of differently processed tea: A review. J Food Sci. 87(5): 1925–1942. doi:10.1111/1750-3841.16137

Worley B, Powers R. 2016. PCA as a practical indicator of OPLS-DA model reliability. Curr Metabolomics. 4 (2): 97–103. doi:10.2174/221323 5X04666160613122429

Wrolstad RE, Smith DE. 2017. Color Analysis. Di dalam: Nielsen SS, editor. Food Analysis. Cham (CH): Springer. hlm 545–555. doi:10.1007/978-3-319-45776-5_31

Yuliana ND, Prangdimurti E, Faridah DN. 2018. FTIR-Metabolomics to correlate sorghum’s chemical profile and hct-116 cytotoxicity changes during rice-analogue production. J Teknologi Industri Pangan. 29 (2): 110–118. doi:10.6066/jtip.2018.29.2.110

Zeng L, Zhou X, Su X, Yang Z. 2020. Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends Food Sci Technol. 106: 242–253. doi:10.1016/j.tifs.2020.10.001

Zhou ZD, Xie SP, Saw WT, Ho PGH, Wang HY, Zhou L, Zhao Y, Tan EK. 2019. The therapeutic implications of tea polyphenols against dopamine (DA) neuron degeneration in parkinson’s disease (PD). Cells. 8 (8): 911. doi:10.3390/cells8080911

Downloads

Published

2025-10-03

Issue

Section

Research Paper

How to Cite

Yusuf, M. S. ., Hunaefi, D. ., & Yuliana, N. D. (2025). Korelasi Sidik Jari Teh Putih (Camellia sinensis) dan Aktivitas Antioksidannya Menggunakan Spektrofotometri Inframerah Transformasi Fourier (FTIR) dan Analisis Data Multivariat. Jurnal Mutu Pangan : Indonesian Journal of Food Quality, 12(2), 130-140. https://doi.org/10.29244/jmpi.2025.12.2.130