Effect of Drying Temperature and Slice Thickness on Drying Kinetics, Moisture Diffusivity, Energy Use, and Color Change in Convectively Dried Chayote Squash Slices

Authors

  • Tina Nurkhoeriyati Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia
  • Ignatius Arya Krishna Rustandi Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia
  • Mwewa Chikonkolo Mwape Department of Agricultural and Biosystems Engineering, University of Kassel, Germany

DOI:

https://doi.org/10.29244/jmpi.2025.12.2.141

Keywords:

chayote squash, model fitting, optimization, temperature, thickness

Abstract

Insufficient fiber intake is strongly associated with chronic diseases. Chayote squash (Sechium edule), widely available in Indonesia, has potential as a fiber source, and drying provides a practical method for its use in food products. This study evaluated the drying kinetics, specific energy consumption (SEC), total color change (ΔE*ab), and effective moisture diffusivity (Deff) of chayote slices under different temperatures (50, 60, and 70 °C) and thicknesses (3 and 6 mm) to determine the optimum drying conditions. Drying time (DT) ranged from 150 min (70 °C, 3 mm) to 350 min (50 °C, 6 mm). The approximation of diffusion and the Midilli and others models best represented the drying kinetics. The highest SEC was 3.40×10⁶ kJ·kg⁻¹ (60 °C, 3 mm), while other treatments showed no significant differences. Deff increased with temperature and thickness (3.38×10⁻¹⁰ to 1.28×10⁻⁹ m²·s⁻¹). Food color, an important factor influencing consumer acceptance, showed no significant ΔE*ab differences across treatments. The optimum drying condition determined was 70 °C with 3 mm slices (DT of 149 min, ΔE*ab of 16.62, SEC of 3.02×10⁶ kJ·kg⁻¹). These findings provide insights into designing chayote drying processes that achieve desirable quality while minimizing energy consumption.

Downloads

Download data is not yet available.

References

Akonor PT, Tortoe C. 2014. Effect of blanching and osmotic pre-treatment on drying kinetics, shrinkage and rehydration of chayote (Sechium edule) during convective drying. Curr J Appl Sci Technol. 4 (8): 1215–1229. doi:10.9734/BJAST/2014/4567

Álvarez-Morales A, Luna-Solano G, Ramirez-Martinez A. 2018. The drying and rehydration process of chayote (Sechium edule) [Conference paper]. València: IDS’2018-21st International Drying Symposium. doi:10.4995/IDS2018.2018.7860

Aral S, Beşe AV. 2016. Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chem. 210 (1): 577–584. doi:10.1016/j.foodchem.2016.04.128

Beigi M. 2016. Hot air drying of apple slices: dehydration characteristics and quality assessment. Heat Mass Transf. 52 (2016): 1435–1442. doi:10.1007/s00231-015-1646-8

Berk Z. 2018. Food Process Engineering and Technology (pp. 513–566). London: Elsevier. ISBN 978-0-12-812018-7. doi:10.1016/B978-0-12-812018-7.00022-1

BPS-Statistics Indonesia. 2025. Produksi Tanaman Sayuran dan Buah-Buahan Semusim Menurut Provinsi dan Jenis Tanaman, 2024-Tabel Statistik -Badan Pusat Statistik Indonesia. Indonesia. [accessed April 8th 2025]. https://www.bps.go.id/ id/statistics-table/3/ZUhFd1JtZzJWVVpqWTJsV0 5XTllhVmhRSzFoNFFUMDkjMw==/produksi-tanaman-sayuran-dan-buah-buahan-semusim-me nurut-provinsi-dan-jenis-tanaman----2024.html? year=2024

Chayjan RA, Salari K, Abedi Q, Sabziparvar AA. 2011. Modeling moisture diffusivity, activation energy and specific energy consumption of squash seeds in a semi fluidized and fluidized bed drying. J Food Sci Technol. 50 (4): 667–677. doi:10.1007/s13197-011-0399-8

Chigbo KS, Linus-Chibuezeh A, Moufunanya UF, Adindu-Linus CO, Adepoju FO, Eke AB, Oke-chukwu QN. 2024. Mathematical modeling of the effects of thickness and temperature on thin-layer drying kinetics of oven-dried cooking bananas (Musa spp., sub. grp. ABB) slices. Food Prod Process and Nutr. 6 (2024): 51. doi:10.1186/s43014-024-00233-9

Dattner M, Bohn D. 2016. Characterization of Print Quality in Terms of Colorimetric Aspects. Izdebska J & Thomas S, editor. Printing on Polymers. Waltham: William Andrew Publishing/Elsevier. pp. 329–345. doi:10.1016/B978-0-323-37468-2.00020-8

Directorate of Prevention and Control of Non-Communicable Diseases. 2017. P2PTM_ RAK2017. Indonesia. [accessed 16/01/2025]. https://p2p.kemkes.go.id/wp-content/uploads/2017/12/P2PTM_RAK2017.pdf

Djojosaputro M, Prihantini NN. 2023. The relationship between knowledge, attitude, and behavior of fiber food consumption with defection pattern. Asian J Medicine and Health. 21 (10): 84–97. doi:10.9734/ajmah/2023/v21i10881

Doymaz I, Kipcak AS. 2018. Effect of pre-treatment and air temperature on drying time of cherry tomato. J Thermal Eng. 4 (1): 1648–1655. doi:10.18186/journal-of-thermal-engineering.364489

Estrada-Girón Y, del Campo-Campos AM, Gutiérrez-García E, Fernández-Escamilla VV, Martínez-Chávez L, & Jaime-Ornelas TJ. 2024. Composite coatings applied to fresh and blanched chayote (Sechium edule) and modeling of the drying kinetics and sorption isotherms. Foods. 13 (8): 1178. doi:10.3390/foods13081178

Faal S, Tavakoli T, Ghobadian B. 2015. Mathematical modelling of thin layer hot air drying of apricot with combined heat and power dryer. J Food Sci Technol. 52 (5): 2950–2957. doi:10.1007/s13197-014-1331-9

Guine RPF, Correia PMR, Correia AC, Goncalves F, Brito MFS, Ribeiro JRP. 2017. Effect of drying temperature on the physical-chemical and sensorial properties of eggplant (Solanum melongena L.). Curr Nutr Food Sci. 14 (1): 28–39. doi:10.2174/1573401313666170316113359

Gunawan AD, Bardosono S, Mudjihartini N. 2021. Association between apolipoprotein B and dietary fibers. World Nutrition J. 4 (2): 73–83. doi:10.25220/WNJ.V04.i2.0010

Hanifah NID, Dieny F. F. 2016. Hubungan total asupan serat, serat larut air (soluble), dan serat tidak larut air (insoluble) dengan kejadian sindrom metabolik pada remaja obesitas. J Nutr Coll. 5 (3): 148-155.

Imchen T, Singh KS. 2023. Marine algae colorants: Antioxidant, anti-diabetic properties and appli-cations in food industry. Algal Res. 69: 102898. doi:10.1016/j.algal.2022.102898

Kamal MS, Shakil M, Akter T, Yasmin S, Saeid A, Khandaker MU. 2023. Moisture sorption behavior and effects of temperature, slice thickness, and loading density on drying kinetics of a local sweet potato cultivar grown in Bangladesh. J Food Process Preserv. 2023 (1): 5523400. doi:10.1155/2023/5523400

Kek SP, Chin NL, Yusof YA. 2014. Simultaneous time-temperature-thickness superposition theoretical and statistical modelling of convective drying of guava. J Food Sci Technol. 51: 3609–3622. doi:10.1007/s13197-013-0923-0

Krokida M, Maroulis Z. 2000. Quality Changes During Drying of Food Materials. Mujumdar, A. S., editor. Drying Technology in Agriculture and Food Sciences. Enfield: Science Publishers Inc. pp. 61–106.

Lalrammawii HP, Said PP. 2023. Optimisation of ready-to-cook chayote slices using pilot scale vacuum drying process. Indian J Nat Prod Resour. 14 (4): 666–671. doi:10.56042/ijnpr.v14i4.5784

Le MS, Hermansen C, Vuong QV. 2025. The impact of hot air drying and vacuum drying on oat pulp quality. Food Bioprocess Technol. 18: 6726-6742. doi:10.1007/s11947-025-03862-1

Lewicki PP, Duszczyk E. 1998. Color change of selected vegetables during convective air drying. Int J Food Prop. 1 (3): 263–273. doi:10.1080/10942919809524582

Md Saleh R, Kulig B, Hensel O, Sturm B. 2019. Investigation of dynamic quality changes and optimization of drying parameters of carrots (Daucus carota var . laguna). J Food Process Eng. 43 (2): e13314. doi:10.1111/jfpe.13314

Minarovičová L, Lauková M, Kohajdová Z, Karovičová J, Dobrovická D, Kuchtová V. 2018. Qualitative properties of pasta enriched with celery root and sugar beet by-products. Czech J Food Sci. 36 (1): 66–72. doi:10.17221/242/2017-CJFS

Mohammed AN, Chauhan OP, Semwal AD. 2024. Emerging technologies for fruits and vegetables dehydration. Food and Humanity. 2, 100303. doi:10.1016/j.foohum.2024.100303

Motulsky HJ, Ransnas LA. 1987. Fitting curves to data using non-linear regression: a practical and nonmathematical review. FASEB J. 1 (5): 365–374. doi:10.1096/fasebj.1.5.3315805

Mwape MC, Kulig B, Nurkhoeriyati T, Roman F, Parmar A, Emmambux NM, Hensel O. 2025. Modeling and optimization of energy efficiency and product quality in staple food roasting using machine learning: A case study on cassava processing. Thermal Sci Eng Progress. 60: 103258. doi:10.1016/j.tsep.2025.103258

Ndisya J, Mbuge D, Kulig B, Gitau A, Hensel O, & Sturm B. 2020. Hot air drying of purple-speckled Cocoyam (Colocasia esculenta (L.) Schott) slices: Optimisation of drying conditions for improved product quality and energy savings. Thermal Sci Eng Progress. 18: 100557. doi:10.1016/j.tsep.2020.100557

Nguyen H, Le TQ. 2022. Drying kinetics and effective moisture diffusivity of pomelo albedo under vacuum-assisted microwave drying and its semi-product. J Food Process Eng. 45 (3): e13968. doi:10.1111/jfpe.13968

Nurkhoeriyati T, Kulig B, Sturm B, Hensel O. 2021. The effect of pre‐drying treatment and drying conditions on quality and energy consumption of hot air‐dried celeriac slices: Optimisation. Foods. 10(8): 1758. doi:10.3390/foods10081758

Özkan M, Kirca A, Cemeroğlu B. 2003. Effect of moisture content on CIE color values in dried apricots. Eur Food Res Technol. 216 (3): 217–219. doi:10.1007/s00217-002-0627-6

Ruiz-López II, Huerta-Mora IR, Vivar-Vera MA, Martínez-Sánchez CE, Herman-Lara E. 2010. Effect of osmotic dehydration on air-drying charac-teristics of chayote. Dry Technol. 28 (10): 1201–1212. doi:10.1080/07373937.2010.482716

Salam SA, Muzira IM, Mugabi R, & Muyanja C. 2023. Preservation of chayote (Sechium Edule L) using different drying methods. J Food Res. 12 (4): 45-55. doi:10.5539/jfr.v12n4p45

Salehi F, Kashaninejad M. 2018. Modeling of moisture loss kinetics and color changes in the surface of lemon slice during the combined infrared-vacuum drying. Information Processing in Agric. 5 (4): 516–523. doi:10.1016/j.inpa.2018.05.006

Sangma C, Kumar V, Suri S, Gat Y, Kaushal M, Kumar A. 2019. Preservation and evaluation of spiced chayote juice using hurdle technology. Braz J Food Technol. 22: 1-14. doi:10.1590/1981-6723.12218

Schemminger J, Raut S, Sturm B, Defraeye T. 2024. A hybrid digital shadow to assess biological variability in carrot slices during drying. Thermal Sci Eng Progress. 50, 102507. doi:10.1016/j.tsep.2024.102507

Siqueira VC, Leite RA, Mabasso GA, Martins EAS, Quequeto WD, Isquierdo EP. 2020. Drying kinetics and effective diffusion of buckwheat grains. Cienc Agrotec. 44: 1–10. doi:10.1590/1413-7054202044 011320

von Gersdorff GJE, Hensel O, Sturm B, Bantle M. 2018. Drying and Chilling/Freezing of Perishable Foods in the Organic Sector. Galanakis, C. M., editor. Sustainable Food Systems from Agriculture to Industry: Improving Production and Processing. London: Elsevier. pp 245-273.

Zhuo M, Chen Z, Zhong ML, Liu YM, Lei F, Qin JJ, Sun T, Yang C, Chen MM, Song XH, Wang LF, Li Y, Zhang XJ, Zhu L, Cai J, Ye JM, Zhou G, Zeng Y. 2023. The global disease burden attributable to a diet low in fibre in 204 countries and territories from 1990 to 2019. Public Health Nutr. 26 (4): 854–865. doi:10.1017/S1368980022001987

Downloads

Published

2025-10-03

Issue

Section

Research Paper

How to Cite

Nurkhoeriyati, T., Rustandi, I. A. K., & Mwape, M. C. (2025). Effect of Drying Temperature and Slice Thickness on Drying Kinetics, Moisture Diffusivity, Energy Use, and Color Change in Convectively Dried Chayote Squash Slices. Jurnal Mutu Pangan : Indonesian Journal of Food Quality, 12(2), 141-150. https://doi.org/10.29244/jmpi.2025.12.2.141