Sodium Butyrate Supplementation for Improving Poultry and Rabbit Performance
Abstract
Sodium butyrate (SB) is a compound that belongs to the class of short-chain fatty acids (SCFA). It is derived from the breakdown of dietary fiber in the colon by gut bacteria. Supplementation of SB in poultry and rabbit diets is of great importance due to its numerous benefits to animal health and performance. Previous studies have shown that sodium butyrate can improve nutrient digestibility, enhance gut health, strengthen the immune system, and reduce the incidence of intestinal diseases in poultry. These favorable benefits eventually contribute to the increased of growth, feed efficiency, and profitability in the poultry and rabbit industries. By improving nutrient digestibility, enhancing gut health, and strengthening the immune system, SB supplementation helps to reduce the incidence of intestinal diseases in poultry and rabbits. This ultimately leads to improved growth, feed efficiency, and overall profitability in the poultry industry. Additionally, SB supplementation can help reduce the need for antibiotics in poultry farming, promoting a more sustainable and environmentally friendly approach to raising poultry. It has efficacy against acid-intolerant species, including Salmonella sp., Clostridium perfringens, and Escherichia coli. Furthermore, the pH of the gastrointestinal system was successfully decreased by administering SB. These properties make SB a promising alternative for maintaining gastrointestinal health and improving poultry and rabbit performance. Therefore, this review provides insight into the continuous development of novel SB supplements and highlights their potential contribution to poultry and rabbit farms.
References
Abd El-Aziz, A., M. Abo Ghanima, D. Mota-Rojas, A. Sherasiya, F. Ciani, & K. El-Sabrout. 2023. Bee products for poultry and rabbits: Current challenges and perspectives. Animals 13:3517. https://doi.org/10.3390/ani13223517
Abd El-Aziz, A. H. A., N. I. El-Kasrawy, M. M. A. Ghanima, A. Alsenosy, S. H. A. Raza, S. Khan, S. Memon, R. Khan, & I. Ullah. 2020. Influence of multi-enzyme preparation supplemented with sodium butyrate on growth performance blood profiles and economic benefit of growing rabbits. J. Anim. Physiol. Anim. Nutr. 104:186-195. https://doi.org/10.1111/jpn.13227
Abd El-Aziz, A. H. A., S. Z. El-Kholya, A. El-Shiekh, & U. E. Mahrous. 2012. Influences of breed, sex and sodium butyrate supplementation on the performance, carcass traits and mortality of fattening rabbits. Alex. J. Vet. Sci. 35:143-153.
Ahsan, U., O. Cengiz, I. Raza, E. Kuter, M. F. A. Chacher, Z. Iqbal, S. Umar, & S. Cakir. 2016. Sodium butyrate in chicken nutrition: The dynamics of performance, gut microbiota, gut morphology, and immunity. Worlds Poult. Sci. J. 72:265-275. https://doi.org/10.1017/S0043933916000210
Angelakis, E. 2017. Weight gain by gut microbiota manipulation in productive animals. Microb. Pathog. 106:162-170. https://doi.org/10.1016/j.micpath.2016.11.002
Cabezón, R. & D. Benítez-Ribas. 2013. Therapeutic potential of tolerogenic dendritic cells in IBD: from animal models to clinical application. Clin. Dev. Immunol. 2013:789814. https://doi.org/10.1155/2013/789814
Carraro, L., G. Xiccato, A. Trocino, & G. Radaelli. 2005. Dietary supplementation of butyrate in growing rabbits. Ital. J. Anim. Sci. 4:538-540. https://doi.org/10.4081/ijas.2005.2s.538
Chang, P. V., L. Hao, S. Offermanns, & R. Medzhitov. 2014. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. U S A 111:2247-2252. https://doi.org/10.1073/pnas.1322269111
Deng, F., S. Tang, H. Zhao, R. Zhong, L. Liu, Q. Meng, H. Zhang, & L. Chen. 2023. Combined effects of sodium butyrate and xylo-oligosaccharide on growth performance, anti-inflammatory and antioxidant capacity, intestinal morphology and microbiota of broilers at early stage. Poult. Sci. 102:102585. https://doi.org/10.1016/j.psj.2023.102585
El-Katcha, M., M. A. Soltan, M. El-Banoby, & K. El-Naggar. 2021. Essential oils and sodium butyrate supplementation in broilers: Effect on growth, nutrients digestibility, intestinal morphology, and blood biochemistry. Alex. J. Vet. Sci. 70:47-57. https://doi.org/10.5455/ajvs.86223
El-Sabrout, K., A. Khalifah, & F. Ciani. 2023. Current applications and trends in rabbit nutraceuticals. Agriculture 13:1424. https://doi.org/10.3390/agriculture13071424
Elnesr, S. S., M. Alagawany, H. A. M. Elwan, M. A. Fathi, & M. R. Farag. 2020. Effect of sodium butyrate on intestinal health of poultry – A review. Annals Animal Science 20:29-41. https://doi.org/10.2478/aoas-2019-0077
Gao, H., Y. Zhang, K. Liu, R. Fan, Q. Li, & Z. Zhou. 2022. Dietary sodium butyrate and/or vitamin D3 supplementation alters growth performance, meat quality, chemical composition, and oxidative stability in broilers. Food Chem. 390:133138. https://doi.org/10.1016/j.foodchem.2022.133138
Gong, H., W. Lang, H. Lan, Y. Fan, T. Wang, Q. Chu, J. Wang, D. D. Li, X. C. Zheng, & M. Wu. 2020. Effects of laying breeder hens dietary β-carotene, curcumin, allicin, and sodium butyrate supplementation on the jejunal microbiota and immune response of their offspring chicks. Poult. Sci. 99:3807-3816. https://doi.org/10.1016/j.psj.2020.03.065
Hamer, H. M., D. Jonkers, K. Venema, S. Vanhoutvin, F. J. Troost, & R. J. Brummer. 2008. Review article: The role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27:104-119. https://doi.org/10.1111/j.1365-2036.2007.03562.x
Henagan, T. M., B. Stefanska, Z. Fang, A. M. Navard, J. Ye, N. R. Lenard, & P. P. Devarshi. 2015. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning. Br. J. Pharmacol. 172:2782-2798. https://doi.org/10.1111/bph.13058
Hoste, H., J. F. Torres-Acosta, C. A. Sandoval-Castro, I. Mueller-Harvey, S. Sotiraki, H. Louvandini, S. M. Thamsborg, & T. H. Terrill. 2015. Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet. Parasitol. 212:5-17. https://doi.org/10.1016/j.vetpar.2015.06.026
Jiang, Y., W. Zhang, F. Gao, & G. Zhou. 2015. Effect of sodium butyrate on intestinal inflammatory response to lipopolysaccharide in broiler chickens. Can. J. Anim. Sci. 95:389-395. https://doi.org/10.4141/cjas-2014-183
Khalifah, A., S. Abdalla, M. Rageb, L. Maruccio, F. Ciani, & K. El-Sabrout. 2023. Could insect products provide a safe and sustainable feed alternative for the poultry industry? A comprehensive review. Animals 13: 1534. https://doi.org/10.3390/ani13091534
Lan, R., Z. Zhao, S. Li, & L. An. 2020. Sodium butyrate as an effective feed additive to improve performance, liver function, and meat quality in broilers under hot climatic conditions. Poult. Sci. 99:5491-5500. https://doi.org/10.1016/j.psj.2020.06.042
Li, C., X. Chen, B. Zhang, L. Liu, & F. Li. 2020. Sodium butyrate improved intestinal barrier in rabbits. Ital. J. Anim. Sci. 19:1482-1492. https://doi.org/10.1080/1828051X.2020.1847209
Li, C., J. Chen, M. Zhao, M. Liu, Z. Yue, L. Liu, & F. Li. 2022. Effect of sodium butyrate on slaughter performance, serum indexes and intestinal barrier of rabbits. J. Anim. Physiol. Anim. Nutr. (Berl) 106:156-166. https://doi.org/10.1111/jpn.13571
Liu, L., H. Ling, W. Zhang, Y. Zhou, Y. Li, N. Peng, & S. Zhao. 2022. Functional comparison of Clostridium butyricum and sodium butyrate supplementation on growth, intestinal health, and the anti-inflammatory response of broilers. Front. Microbiol. 13:914212. https://doi.org/10.3389/fmicb.2022.914212
Liu, Y., Z. Chen, J. Dai, P. Yang, W. Xu, Q. Ai, W. Zhang, Y. Zhang, Y. Zhang, & K. Mai. 2019. Sodium butyrate supplementation in high-soybean meal diets for turbot (Scophthalmus maximus L.): Effects on inflammatory status, mucosal barriers and microbiota in the intestine. Fish Shellfish Immunol. 88:65-75. https://doi.org/10.1016/j.fsi.2019.02.064
Makowski, Z., K. Lipinski, & M. Mazur-Kusnirek. 2022.The effects of sodium butyrate, coated sodium butyrate, and butyric acid glycerides on nutrient digestibility, gastrointestinal function, and fecal microbiota in turkeys. Animals 12:1836. https://doi.org/10.3390/ani12141836
Marounek, M., V. Skřivanová, & O. Savka. 2002. Effect of caprylic, capric and oleic acid on growth of rumen and rabbit caecal bacteria. J. Anim. Feed Sci. 11:507-516. https://doi.org/10.22358/jafs/67904/2002
Mátis, G., M. Mackei, B. Boomsma, H. Fébel, K. Nadolna, Ł. Szymanski, J. E. Edwards, Z. Neogrády, & K. Kozłowski. 2022. Dietary protected butyrate supplementation of broilers modulates intestinal tight junction proteins and stimulates endogenous production of short chain fatty acids in the caecum. Animals 12:1940. https://doi.org/10.3390/ani12151940
Melaku, M., R. Zhong, H. Han, F. Wan, B. Yi, & H. Zhang. 2021. Butyric and citric acids and their salts in poultry nutrition: Effects on gut health and intestinal microbiota. Int. J. Mol. Sci. 22:10392. https://doi.org/10.3390/ijms221910392
Miao, S., Z. Hong, H. Jian, Q. Xu, Y. Liu, X. Wang, Y. Li, X. Dong, & X. Zou. 2022. Alterations in intestinal antioxidant and immune function and cecal microbiota of laying hens fed on coated sodium butyrate supplemented diets. Animals 12:545. https://doi.org/10.3390/ani12050545
Naghizadeh, M., L. Klaver, A. A. Schönherz, S. Rani, T. S. Dalgaard, & R. M. Engberg. 2022. Impact of dietary sodium butyrate and salinomycin on performance and intestinal microbiota in a broiler gut leakage model. Animals 12:111. https://doi.org/10.3390/ani12010111
Raza, M., A. Biswas, N. A. Mir, & A. B. Mandel. 2019. Butyric acid as a promising alternative to antibiotic growth promoter in broiler chicken production. J. Agric. Sci. 157:1-8. https://doi.org/10.1017/S0021859619000212
Sadurní, M., A. C. Barroeta, R. Sala, C. Sol, M. Puyalto, & L. Castillejos. 2022. Impact of dietary supplementation with sodium butyrate protected by medium-chain fatty acid salts on gut health of broiler chickens. Animals 12:2496. https://doi.org/10.3390/ani12192496
Sauer, J., K. K. Richter, & B. L. Pool-Zobel. 2007. Physiological concentrations of butyrate favorably modulate genes of oxidative and metabolic stress in primary human colon cells. J. Nutr. Biochem. 18:736-745. https://doi.org/10.1016/j.jnutbio.2006.12.012
Wafaa, A. A., M. H. Awaad, S. A. Nasef, & A. F. Gaber. 2016. Effect of sodium butyrate on Salmonella enteritidis infection in broiler chickens. Int. J. Poult. Sci. 10:104-110. https://doi.org/10.3923/ajpsaj.2016.104.110
Wan, F., F. L. Deng, L. Chen, R. Q. Zhong, M. Y. Wang, B. Yi, L. Liu, H. B. Zhao, & H. F. Zhang. 2022. Long-term chemically protected sodium butyrate supplementation in broilers as an antibiotic alternative to dynamically modulate gut microbiota. Poult. Sci. 101:102221. https://doi.org/10.1016/j.psj.2022.102221
Wang, Y., L. Xu, X. Sun, X. Wan, G. Sun, R. Jiang, W. Li, Y. Tian, X. Liu, & X. Kang. 2020. Characteristics of the fecal microbiota of high- and low-yield hens and effects of fecal microbiota transplantation on egg production performance. Research Veterinary Science 129:164-173. https://doi.org/10.1016/j.rvsc.2020.01.020
Wu, W., Z. Xiao, W. An, Y. Dong, & B. Zhang. 2018. Dietary sodium butyrate improves intestinal development and function by modulating the microbial community in broilers. PLoS ONE 13: e0197762. https://doi.org/10.1371/journal.pone.0197762
Xiao, C., L. Zhang, B. Zhang, L. Kong, X. Pan, T. Goossens, & Z. Song. 2023. Dietary sodium butyrate improves female broiler breeder performance and offspring immune function by enhancing maternal intestinal barrier and microbiota. Poult. Sci. 102:102658. https://doi.org/10.1016/j.psj.2023.102658
Yang, Q., B. Chen, K. Robinson, T. Belem, W. Lyu, Z. Deng, R. Ramanathan, & G. Zhang. 2022. Butyrate in combination with forskolin alleviates necrotic enteritis, increases feed efficiency, and improves carcass composition of broilers. J. Anim. Sci. Biotechnol. 13:3. https://doi.org/10.1186/s40104-021-00663-2
Yang, X., F. Yin, Y. Yang, D. Lepp, H. Yu, Z. Ruan, C. Yang, Y. Yin, Y. Hou, S. Leeson, & J. Gong. 2018. Dietary butyrate glycerides modulate intestinal microbiota composition and serum metabolites in broilers. Sci. Rep. 8:4940. https://doi.org/10.1038/s41598-018-22565-6
Zeng, T., H. Sun, M. Huang, R. Guo, T. Gu, Y. Cao, C. Li, Y. Tian, L. Chen, G. Li, & L. Lu. 2023. Dietary supplementation of coated sodium butyrate improves growth performance of laying ducks by regulating intestinal health and immunological performance. Front. Immunol. 14:1142915. https://doi.org/10.3389/fimmu.2023.1142915
Zhang, Q., K. Zhang, J. Wang, S. Bai, Q. Zeng, H. Peng, B. Zhang, Y. Xuan, & X. Ding. 2022. Effects of coated sodium butyrate on performance, egg quality, nutrient digestibility, and intestinal health of laying hens. Poult. Sci. 101:102020. https://doi.org/10.1016/j.psj.2022.102020
Zhao, H., H. Bai, F. Deng, R. Zhong, L. Liu, L. Chen, & H. Zhang. 2022. Chemically protected sodium butyrate improves growth performance and early development and function of small intestine in broilers as one effective substitute for antibiotics. Antibiotics 11:132. https://doi.org/10.3390/antibiotics11020132
Zou, X., J. Ji, H. Qu, J. Wang, D. M. Shu, Y. Wang, T. F. Liu, Y. Li, & C. L. Luo. 2019. Effects of sodium butyrate on intestinal health and gut microbiota composition during intestinal inflammation progression in broilers. Poult. Sci. 98:4449–4456. https://doi.org/10.3382/ps/pez279
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.